michael20at commited on
Commit
84563a9
·
1 Parent(s): df5d6df

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 181.25 +/- 51.51
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faea3b40560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faea3b405f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faea3b40680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faea3b40710>", "_build": "<function ActorCriticPolicy._build at 0x7faea3b407a0>", "forward": "<function ActorCriticPolicy.forward at 0x7faea3b40830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faea3b408c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7faea3b40950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faea3b409e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faea3b40a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faea3b40b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7faea3b0f6f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663144745.9594784, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPP8hb3US1w/IFNUPMeJpb5E5/E8D+sdOwAAAAAAAAAAYEJKvtdpXzwDvhG74Ek4ORBW8r0KIjY6AACAPwAAgD82YKu+TqGCP5t8+L2x44u+sTGKvQDokbwAAAAAAAAAABrALT7SAoE/4dSRvRSTwL6W4vS9VdMhvgAAAAAAAAAAAO3AvX8wLj/EQ6a904pSvuSFJ71Ii/29AAAAAAAAAADaP5C+ixwsP2KkBz2mvKK+fT8qvkKg9DwAAAAAAAAAAA3ovD2P5mW6b7+7ux9r2bUm8Ua7EfZINQAAgD8AAIA/Jq36PbpSZz8DulA9EAKbvlmZWD2Lb6c9AAAAAAAAAABgjZM+Go0/P66HO72zvUi+C/3ePXE6yr0AAAAAAAAAAM1DKD2VxuQ+QSWOvW2hJ77EUTi9M33RvQAAAAAAAAAAINciPttRcT+V8BW9fhlGvqQoVT1YSo+9AAAAAAAAAABzIEi+rke4N+t5H7uaqHI3A5Xxux0yX7gAAIA/AACAP81dbL3D3Ty6ToU7vJ9e37UZZDe7q71MNQAAgD8AAIA/TbovPnv0tLoot227ufqrN7cMbbvxKIw6AACAPwAAgD8Akyw+3Wl8P0ZtxjwEiUa+9pYAPhJS2rsAAAAAAAAAADr3Bb7Z2lQ/O0Mcve2XeL66C+W90NpzPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVrwsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQMHFihr0NECUhpRSlIwBbJRLuIwBdJRHQH64G/SH/Ll1fZQoaAZoCWgPQwhORpVh3I0ewJSGlFKUaBVLvmgWR0B+uNPCVKPGdX2UKGgGaAloD0MIJv29FB7YYUCUhpRSlGgVTegDaBZHQH+iWAskIHF1fZQoaAZoCWgPQwgyHxDozNljQJSGlFKUaBVN6ANoFkdAf6Ji2DxsmHV9lChoBmgJaA9DCOpdvB830GJAlIaUUpRoFU3oA2gWR0B/omz9jwx4dX2UKGgGaAloD0MIXWqEfiZ5YECUhpRSlGgVTegDaBZHQH+ieLR8c+91fZQoaAZoCWgPQwi6EoHqn+RiQJSGlFKUaBVN6ANoFkdAf6KAoG6f8XV9lChoBmgJaA9DCB1bzxCOaWBAlIaUUpRoFU3oA2gWR0B/oohhYvFndX2UKGgGaAloD0MIEVfO3hlqU0CUhpRSlGgVTegDaBZHQH+ikWM0gr91fZQoaAZoCWgPQwi2heelYqVeQJSGlFKUaBVN6ANoFkdAf6KZl4C6pnV9lChoBmgJaA9DCOBJC5dVu2FAlIaUUpRoFU3oA2gWR0B/oqXw9aEBdX2UKGgGaAloD0MIcy7FVeWhYECUhpRSlGgVTegDaBZHQH+irjghr311fZQoaAZoCWgPQwisqME0DJheQJSGlFKUaBVN6ANoFkdAf6K40uUUwnV9lChoBmgJaA9DCCEHJcy0sWBAlIaUUpRoFU3oA2gWR0B/osAFPi1idX2UKGgGaAloD0MIqMR1jCsiY0CUhpRSlGgVTegDaBZHQH+iyBoVVPx1fZQoaAZoCWgPQwgm32xz4whiQJSGlFKUaBVN6ANoFkdAf6LRm9QGfXV9lChoBmgJaA9DCMVyS6shcmVAlIaUUpRoFU3oA2gWR0CAAQJKraM8dX2UKGgGaAloD0MIe4fboeGlZUCUhpRSlGgVTegDaBZHQIABdkJ8fFJ1fZQoaAZoCWgPQwgW+8vuyas9QJSGlFKUaBVL42gWR0CABEk3S8aodX2UKGgGaAloD0MI16axvRZkIsCUhpRSlGgVTSwBaBZHQIALg0ZWJad1fZQoaAZoCWgPQwgQyZBj6/xSwJSGlFKUaBVNfgFoFkdAgBXNSQ5my3V9lChoBmgJaA9DCPWAeciURyzAlIaUUpRoFU0kAWgWR0CAI7AM2FWXdX2UKGgGaAloD0MIFOl+TkFxYkCUhpRSlGgVTegDaBZHQIB709SuQp51fZQoaAZoCWgPQwgDmZ1FbxpmQJSGlFKUaBVN6ANoFkdAgHvbG3nZCnV9lChoBmgJaA9DCKkR+pl66WBAlIaUUpRoFU3oA2gWR0CAe9/giu+zdX2UKGgGaAloD0MIGqIKf4YKV0CUhpRSlGgVTegDaBZHQIB75BzFMqV1fZQoaAZoCWgPQwgcQL/v315YQJSGlFKUaBVN6ANoFkdAgHvoxQBPsXV9lChoBmgJaA9DCI9U3/lFpFZAlIaUUpRoFU3oA2gWR0CAe+1BMSK4dX2UKGgGaAloD0MIs0EmGTlsUUCUhpRSlGgVTegDaBZHQIB7894eLeh1fZQoaAZoCWgPQwjyJVRweG1fQJSGlFKUaBVN6ANoFkdAgHv4k3S8anV9lChoBmgJaA9DCDP60XDKH19AlIaUUpRoFU3oA2gWR0CAe/59mYjTdX2UKGgGaAloD0MI8MLWbOUMX0CUhpRSlGgVTegDaBZHQIB8DBAOav11fZQoaAZoCWgPQwiBI4EGm+pfQJSGlFKUaBVN6ANoFkdAgHwQmeDnNnV9lChoBmgJaA9DCJesinAT6WFAlIaUUpRoFU3oA2gWR0CAsOeg+QlsdX2UKGgGaAloD0MIHNDSFewbZUCUhpRSlGgVTegDaBZHQIC1Nalk6Lh1fZQoaAZoCWgPQwicbW5MT5ZGQJSGlFKUaBVNIwFoFkdAgLyYEnssx3V9lChoBmgJaA9DCCridJKtJlxAlIaUUpRoFU3oA2gWR0CAvZO8kD6ndX2UKGgGaAloD0MIOpUMAFXoVkCUhpRSlGgVTegDaBZHQIDGt5v99+h1fZQoaAZoCWgPQwhEvkupSxBUQJSGlFKUaBVN6ANoFkdAgNL6TGHYYnV9lChoBmgJaA9DCE/ltKfk/BbAlIaUUpRoFU0TAWgWR0CA1YYNRWLhdX2UKGgGaAloD0MIhqqYSj/9T8CUhpRSlGgVTbwBaBZHQIDlJggHNX51fZQoaAZoCWgPQwiug4O9CahgQJSGlFKUaBVN6ANoFkdAgRyobfgrH3V9lChoBmgJaA9DCPt1pztPK1pAlIaUUpRoFU3oA2gWR0CBHK85jpcHdX2UKGgGaAloD0MIWFnbFI9dXkCUhpRSlGgVTegDaBZHQIEcs6T4cm11fZQoaAZoCWgPQwgTDyib8mdgQJSGlFKUaBVN6ANoFkdAgRy5HVf/m3V9lChoBmgJaA9DCNEjRs+t+WJAlIaUUpRoFU3oA2gWR0CBHL3L3bmEdX2UKGgGaAloD0MI++qqQK05YUCUhpRSlGgVTegDaBZHQIEcwx33Ycx1fZQoaAZoCWgPQwiY9s391dJfQJSGlFKUaBVN6ANoFkdAgRzG7z06HXV9lChoBmgJaA9DCPeSxmgdQl5AlIaUUpRoFU3oA2gWR0CBHMveP7vYdX2UKGgGaAloD0MIOiS1ULIjYECUhpRSlGgVTegDaBZHQIEc1Zid8Rd1fZQoaAZoCWgPQwg/rDdqhbdfQJSGlFKUaBVN6ANoFkdAgRzZsKsuF3V9lChoBmgJaA9DCJIDdjV5GlxAlIaUUpRoFU3oA2gWR0CBXHMkhRqHdX2UKGgGaAloD0MIP3PWpxyqX0CUhpRSlGgVTegDaBZHQIFdkAT7EYR1fZQoaAZoCWgPQwgUXoJTH2pbQJSGlFKUaBVN6ANoFkdAgWdlq8DjinV9lChoBmgJaA9DCIv5uaEp7FlAlIaUUpRoFU3oA2gWR0CBdEm7aqS6dX2UKGgGaAloD0MI3SObq+ZjWkCUhpRSlGgVTegDaBZHQIF23Q+lj3F1fZQoaAZoCWgPQwjcKoiBruVOQJSGlFKUaBVN6ANoFkdAgYcPXTVlPXV9lChoBmgJaA9DCCarItxkckLAlIaUUpRoFUveaBZHQIGRKAJ9iMJ1fZQoaAZoCWgPQwhDPBIvT8s4QJSGlFKUaBVNIAFoFkdAgZ06Lfk3j3V9lChoBmgJaA9DCCXOiqiJJjLAlIaUUpRoFU0bAWgWR0CBrse2d/aydX2UKGgGaAloD0MIPIcyVEVlYECUhpRSlGgVTegDaBZHQIG8XxMFlkJ1fZQoaAZoCWgPQwh2xCEbSNJeQJSGlFKUaBVN6ANoFkdAgbxnbZezEHV9lChoBmgJaA9DCPRPcLGidVJAlIaUUpRoFU3oA2gWR0CBvGzWPLgXdX2UKGgGaAloD0MI/FWA7zZ9YkCUhpRSlGgVTegDaBZHQIG8cXpGFzx1fZQoaAZoCWgPQwhz8iITcBNhQJSGlFKUaBVN6ANoFkdAgbx28yvcJ3V9lChoBmgJaA9DCBe4PNYMZmBAlIaUUpRoFU3oA2gWR0CBvHuXNTtLdX2UKGgGaAloD0MIZJEm3gFLW0CUhpRSlGgVTegDaBZHQIG8fywwCbN1fZQoaAZoCWgPQwhGeeblsC5gQJSGlFKUaBVN6ANoFkdAgbyCZv1lG3V9lChoBmgJaA9DCEmBBTBlHl9AlIaUUpRoFU3oA2gWR0CBvIp6QeV+dX2UKGgGaAloD0MI+KbpswPYX0CUhpRSlGgVTegDaBZHQIG8jkIX0oV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 140, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2ac2f97e12d7e89bc5d0b74b9609d50c3ed019179461d773a0817720319d9ab
3
+ size 145505
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7faea3b40560>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faea3b405f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faea3b40680>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faea3b40710>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7faea3b407a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7faea3b40830>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faea3b408c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7faea3b40950>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faea3b409e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faea3b40a70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faea3b40b00>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7faea3b0f6f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 65536,
46
+ "_total_timesteps": 50000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1663144745.9594784,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPP8hb3US1w/IFNUPMeJpb5E5/E8D+sdOwAAAAAAAAAAYEJKvtdpXzwDvhG74Ek4ORBW8r0KIjY6AACAPwAAgD82YKu+TqGCP5t8+L2x44u+sTGKvQDokbwAAAAAAAAAABrALT7SAoE/4dSRvRSTwL6W4vS9VdMhvgAAAAAAAAAAAO3AvX8wLj/EQ6a904pSvuSFJ71Ii/29AAAAAAAAAADaP5C+ixwsP2KkBz2mvKK+fT8qvkKg9DwAAAAAAAAAAA3ovD2P5mW6b7+7ux9r2bUm8Ua7EfZINQAAgD8AAIA/Jq36PbpSZz8DulA9EAKbvlmZWD2Lb6c9AAAAAAAAAABgjZM+Go0/P66HO72zvUi+C/3ePXE6yr0AAAAAAAAAAM1DKD2VxuQ+QSWOvW2hJ77EUTi9M33RvQAAAAAAAAAAINciPttRcT+V8BW9fhlGvqQoVT1YSo+9AAAAAAAAAABzIEi+rke4N+t5H7uaqHI3A5Xxux0yX7gAAIA/AACAP81dbL3D3Ty6ToU7vJ9e37UZZDe7q71MNQAAgD8AAIA/TbovPnv0tLoot227ufqrN7cMbbvxKIw6AACAPwAAgD8Akyw+3Wl8P0ZtxjwEiUa+9pYAPhJS2rsAAAAAAAAAADr3Bb7Z2lQ/O0Mcve2XeL66C+W90NpzPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.3107200000000001,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVrwsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQMHFihr0NECUhpRSlIwBbJRLuIwBdJRHQH64G/SH/Ll1fZQoaAZoCWgPQwhORpVh3I0ewJSGlFKUaBVLvmgWR0B+uNPCVKPGdX2UKGgGaAloD0MIJv29FB7YYUCUhpRSlGgVTegDaBZHQH+iWAskIHF1fZQoaAZoCWgPQwgyHxDozNljQJSGlFKUaBVN6ANoFkdAf6Ji2DxsmHV9lChoBmgJaA9DCOpdvB830GJAlIaUUpRoFU3oA2gWR0B/omz9jwx4dX2UKGgGaAloD0MIXWqEfiZ5YECUhpRSlGgVTegDaBZHQH+ieLR8c+91fZQoaAZoCWgPQwi6EoHqn+RiQJSGlFKUaBVN6ANoFkdAf6KAoG6f8XV9lChoBmgJaA9DCB1bzxCOaWBAlIaUUpRoFU3oA2gWR0B/oohhYvFndX2UKGgGaAloD0MIEVfO3hlqU0CUhpRSlGgVTegDaBZHQH+ikWM0gr91fZQoaAZoCWgPQwi2heelYqVeQJSGlFKUaBVN6ANoFkdAf6KZl4C6pnV9lChoBmgJaA9DCOBJC5dVu2FAlIaUUpRoFU3oA2gWR0B/oqXw9aEBdX2UKGgGaAloD0MIcy7FVeWhYECUhpRSlGgVTegDaBZHQH+irjghr311fZQoaAZoCWgPQwisqME0DJheQJSGlFKUaBVN6ANoFkdAf6K40uUUwnV9lChoBmgJaA9DCCEHJcy0sWBAlIaUUpRoFU3oA2gWR0B/osAFPi1idX2UKGgGaAloD0MIqMR1jCsiY0CUhpRSlGgVTegDaBZHQH+iyBoVVPx1fZQoaAZoCWgPQwgm32xz4whiQJSGlFKUaBVN6ANoFkdAf6LRm9QGfXV9lChoBmgJaA9DCMVyS6shcmVAlIaUUpRoFU3oA2gWR0CAAQJKraM8dX2UKGgGaAloD0MIe4fboeGlZUCUhpRSlGgVTegDaBZHQIABdkJ8fFJ1fZQoaAZoCWgPQwgW+8vuyas9QJSGlFKUaBVL42gWR0CABEk3S8aodX2UKGgGaAloD0MI16axvRZkIsCUhpRSlGgVTSwBaBZHQIALg0ZWJad1fZQoaAZoCWgPQwgQyZBj6/xSwJSGlFKUaBVNfgFoFkdAgBXNSQ5my3V9lChoBmgJaA9DCPWAeciURyzAlIaUUpRoFU0kAWgWR0CAI7AM2FWXdX2UKGgGaAloD0MIFOl+TkFxYkCUhpRSlGgVTegDaBZHQIB709SuQp51fZQoaAZoCWgPQwgDmZ1FbxpmQJSGlFKUaBVN6ANoFkdAgHvbG3nZCnV9lChoBmgJaA9DCKkR+pl66WBAlIaUUpRoFU3oA2gWR0CAe9/giu+zdX2UKGgGaAloD0MIGqIKf4YKV0CUhpRSlGgVTegDaBZHQIB75BzFMqV1fZQoaAZoCWgPQwgcQL/v315YQJSGlFKUaBVN6ANoFkdAgHvoxQBPsXV9lChoBmgJaA9DCI9U3/lFpFZAlIaUUpRoFU3oA2gWR0CAe+1BMSK4dX2UKGgGaAloD0MIs0EmGTlsUUCUhpRSlGgVTegDaBZHQIB7894eLeh1fZQoaAZoCWgPQwjyJVRweG1fQJSGlFKUaBVN6ANoFkdAgHv4k3S8anV9lChoBmgJaA9DCDP60XDKH19AlIaUUpRoFU3oA2gWR0CAe/59mYjTdX2UKGgGaAloD0MI8MLWbOUMX0CUhpRSlGgVTegDaBZHQIB8DBAOav11fZQoaAZoCWgPQwiBI4EGm+pfQJSGlFKUaBVN6ANoFkdAgHwQmeDnNnV9lChoBmgJaA9DCJesinAT6WFAlIaUUpRoFU3oA2gWR0CAsOeg+QlsdX2UKGgGaAloD0MIHNDSFewbZUCUhpRSlGgVTegDaBZHQIC1Nalk6Lh1fZQoaAZoCWgPQwicbW5MT5ZGQJSGlFKUaBVNIwFoFkdAgLyYEnssx3V9lChoBmgJaA9DCCridJKtJlxAlIaUUpRoFU3oA2gWR0CAvZO8kD6ndX2UKGgGaAloD0MIOpUMAFXoVkCUhpRSlGgVTegDaBZHQIDGt5v99+h1fZQoaAZoCWgPQwhEvkupSxBUQJSGlFKUaBVN6ANoFkdAgNL6TGHYYnV9lChoBmgJaA9DCE/ltKfk/BbAlIaUUpRoFU0TAWgWR0CA1YYNRWLhdX2UKGgGaAloD0MIhqqYSj/9T8CUhpRSlGgVTbwBaBZHQIDlJggHNX51fZQoaAZoCWgPQwiug4O9CahgQJSGlFKUaBVN6ANoFkdAgRyobfgrH3V9lChoBmgJaA9DCPt1pztPK1pAlIaUUpRoFU3oA2gWR0CBHK85jpcHdX2UKGgGaAloD0MIWFnbFI9dXkCUhpRSlGgVTegDaBZHQIEcs6T4cm11fZQoaAZoCWgPQwgTDyib8mdgQJSGlFKUaBVN6ANoFkdAgRy5HVf/m3V9lChoBmgJaA9DCNEjRs+t+WJAlIaUUpRoFU3oA2gWR0CBHL3L3bmEdX2UKGgGaAloD0MI++qqQK05YUCUhpRSlGgVTegDaBZHQIEcwx33Ycx1fZQoaAZoCWgPQwiY9s391dJfQJSGlFKUaBVN6ANoFkdAgRzG7z06HXV9lChoBmgJaA9DCPeSxmgdQl5AlIaUUpRoFU3oA2gWR0CBHMveP7vYdX2UKGgGaAloD0MIOiS1ULIjYECUhpRSlGgVTegDaBZHQIEc1Zid8Rd1fZQoaAZoCWgPQwg/rDdqhbdfQJSGlFKUaBVN6ANoFkdAgRzZsKsuF3V9lChoBmgJaA9DCJIDdjV5GlxAlIaUUpRoFU3oA2gWR0CBXHMkhRqHdX2UKGgGaAloD0MIP3PWpxyqX0CUhpRSlGgVTegDaBZHQIFdkAT7EYR1fZQoaAZoCWgPQwgUXoJTH2pbQJSGlFKUaBVN6ANoFkdAgWdlq8DjinV9lChoBmgJaA9DCIv5uaEp7FlAlIaUUpRoFU3oA2gWR0CBdEm7aqS6dX2UKGgGaAloD0MI3SObq+ZjWkCUhpRSlGgVTegDaBZHQIF23Q+lj3F1fZQoaAZoCWgPQwjcKoiBruVOQJSGlFKUaBVN6ANoFkdAgYcPXTVlPXV9lChoBmgJaA9DCCarItxkckLAlIaUUpRoFUveaBZHQIGRKAJ9iMJ1fZQoaAZoCWgPQwhDPBIvT8s4QJSGlFKUaBVNIAFoFkdAgZ06Lfk3j3V9lChoBmgJaA9DCCXOiqiJJjLAlIaUUpRoFU0bAWgWR0CBrse2d/aydX2UKGgGaAloD0MIPIcyVEVlYECUhpRSlGgVTegDaBZHQIG8XxMFlkJ1fZQoaAZoCWgPQwh2xCEbSNJeQJSGlFKUaBVN6ANoFkdAgbxnbZezEHV9lChoBmgJaA9DCPRPcLGidVJAlIaUUpRoFU3oA2gWR0CBvGzWPLgXdX2UKGgGaAloD0MI/FWA7zZ9YkCUhpRSlGgVTegDaBZHQIG8cXpGFzx1fZQoaAZoCWgPQwhz8iITcBNhQJSGlFKUaBVN6ANoFkdAgbx28yvcJ3V9lChoBmgJaA9DCBe4PNYMZmBAlIaUUpRoFU3oA2gWR0CBvHuXNTtLdX2UKGgGaAloD0MIZJEm3gFLW0CUhpRSlGgVTegDaBZHQIG8fywwCbN1fZQoaAZoCWgPQwhGeeblsC5gQJSGlFKUaBVN6ANoFkdAgbyCZv1lG3V9lChoBmgJaA9DCEmBBTBlHl9AlIaUUpRoFU3oA2gWR0CBvIp6QeV+dX2UKGgGaAloD0MI+KbpswPYX0CUhpRSlGgVTegDaBZHQIG8jkIX0oV1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 140,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43737c4b1d20eb61742d384f7b9e2e6af4b5f28d148364674d3f6dd98ad6f2b5
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a30deba1cb94dc64ca7c458cc92a69b056e9e477fa7cfe38b0809fdb6edd5f8e
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (259 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 181.25250484748997, "std_reward": 51.506663727369954, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-14T08:58:09.223935"}