File size: 2,074 Bytes
76033bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42a3895
76033bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: mit
tags:
- ctranslate2
---
# Fast-Inference with Ctranslate2
Speedup inference by 2x-8x using int8 inference in C++

quantized version of [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b)
```bash
pip install hf_hub_ctranslate2>=1.0.0 ctranslate2>=3.13.0
```


Checkpoint compatible to [ctranslate2](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2](https://github.com/michaelfeil/hf-hub-ctranslate2)
- `compute_type=int8_float16` for `device="cuda"` 
- `compute_type=int8`  for `device="cpu"`

```python
from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub

model_name = "michaelfeil/ct2fast-dolly-v2-12b"
model = GeneratorCT2fromHfHub(
        # load in int8 on CUDA
        model_name_or_path=model_name, 
        device="cuda",
        compute_type="int8_float16"
)
outputs = model.generate(
    text=["How do you call a fast Flan-ingo?", "User: How are you doing?"],
)
print(outputs)
```

# Licence and other remarks:
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.

# Usage of Dolly-v2:
According to the Intruction Pipeline of databricks/dolly-v2-12b
```python
# from https://huggingface.co/databricks/dolly-v2-12b
def encode_prompt(instruction):
  INSTRUCTION_KEY = "### Instruction:"
  RESPONSE_KEY = "### Response:"
  END_KEY = "### End"
  INTRO_BLURB = (
      "Below is an instruction that describes a task. Write a response that appropriately completes the request."
  )
  
  # This is the prompt that is used for generating responses using an already trained model.  It ends with the response
  # key, where the job of the model is to provide the completion that follows it (i.e. the response itself).
  PROMPT_FOR_GENERATION_FORMAT = """{intro}
  {instruction_key}
  {instruction}
  {response_key}
  """.format(
      intro=INTRO_BLURB,
      instruction_key=INSTRUCTION_KEY,
      instruction="{instruction}",
      response_key=RESPONSE_KEY,
  )
  return PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction)
```