add modeling_magma
Browse files- modeling_magma.py +1460 -0
modeling_magma.py
ADDED
@@ -0,0 +1,1460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch Magma model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
import re
|
19 |
+
import os
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from torch import nn
|
27 |
+
import wandb
|
28 |
+
import torch.distributed as dist
|
29 |
+
from transformers.modeling_utils import PreTrainedModel
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.cache_utils import Cache, DynamicCache
|
32 |
+
from transformers.utils import ModelOutput
|
33 |
+
from transformers.utils import (
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
logging,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
41 |
+
from .configuration_magma import MagmaConfig
|
42 |
+
from .image_tower_magma import MagmaImageTower
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_CONFIG_FOR_DOC = "MagmaConfig"
|
47 |
+
|
48 |
+
@dataclass
|
49 |
+
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Magma
|
50 |
+
class MagmaCausalLMOutputWithPast(ModelOutput):
|
51 |
+
"""
|
52 |
+
Base class for Magma causal language model (or autoregressive) outputs.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
56 |
+
Language modeling loss (for next-token prediction).
|
57 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
58 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
59 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
60 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
61 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
62 |
+
|
63 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
64 |
+
`past_key_values` input) to speed up sequential decoding.
|
65 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
66 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
67 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
68 |
+
|
69 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
70 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
71 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
72 |
+
sequence_length)`.
|
73 |
+
|
74 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
75 |
+
heads.
|
76 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
77 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
78 |
+
sequence_length, hidden_size)`.
|
79 |
+
|
80 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
81 |
+
"""
|
82 |
+
|
83 |
+
loss: Optional[torch.FloatTensor] = None
|
84 |
+
logits: torch.FloatTensor = None
|
85 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
86 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
87 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
88 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
89 |
+
|
90 |
+
|
91 |
+
class MagmaMultiModalProjector(nn.Module):
|
92 |
+
def __init__(self, config):
|
93 |
+
super().__init__()
|
94 |
+
self.config = config
|
95 |
+
|
96 |
+
dim_vision = {'base': 640, 'large': 768, 'xxlarge': 1024}
|
97 |
+
vision_backbone = config.get('vision_backbone', 'convnextxxlarge')
|
98 |
+
vision_backbone_size = vision_backbone.replace('convnext', '')
|
99 |
+
projector_type = config.get('mm_projector_type', 'linear')
|
100 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu_segtokv(\d+)$', projector_type)
|
101 |
+
if mlp_gelu_match:
|
102 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
103 |
+
modules = [nn.Linear(config['mm_hidden_size'], config['hidden_size'])]
|
104 |
+
for _ in range(1, mlp_depth):
|
105 |
+
modules.append(nn.GELU())
|
106 |
+
modules.append(nn.Linear(config['hidden_size'], config['hidden_size']))
|
107 |
+
self.proj = nn.Sequential(*modules)
|
108 |
+
|
109 |
+
# define a row seperator
|
110 |
+
self.row_seperator = nn.Parameter(torch.zeros(1, 1, config['hidden_size']))
|
111 |
+
if config.get('mm_use_im_start_end', False):
|
112 |
+
self.img_start_seperator = nn.Parameter(torch.zeros(1, config['hidden_size']))
|
113 |
+
self.img_end_seperator = nn.Parameter(torch.zeros(1, config['hidden_size']))
|
114 |
+
|
115 |
+
def forward(self, x):
|
116 |
+
return self.proj(x)
|
117 |
+
|
118 |
+
|
119 |
+
MAGMA_START_DOCSTRING = r"""
|
120 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
121 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
122 |
+
etc.)
|
123 |
+
|
124 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
125 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
126 |
+
and behavior.
|
127 |
+
|
128 |
+
Parameters:
|
129 |
+
config ([`MagmaConfig`] or [`MagmaVisionConfig`]):
|
130 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
131 |
+
load the weights associated with the model, only the configuration. Check out the
|
132 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
133 |
+
"""
|
134 |
+
|
135 |
+
|
136 |
+
@add_start_docstrings(
|
137 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
138 |
+
MAGMA_START_DOCSTRING,
|
139 |
+
)
|
140 |
+
|
141 |
+
class MagmaPreTrainedModel(PreTrainedModel):
|
142 |
+
config_class = MagmaConfig
|
143 |
+
base_model_prefix = "model"
|
144 |
+
supports_gradient_checkpointing = True
|
145 |
+
_no_split_modules = ["MagmaVisionAttention"]
|
146 |
+
_skip_keys_device_placement = "past_key_values"
|
147 |
+
_supports_flash_attn_2 = True
|
148 |
+
|
149 |
+
def _init_weights(self, module):
|
150 |
+
std = (
|
151 |
+
self.config.initializer_range
|
152 |
+
if hasattr(self.config, "initializer_range")
|
153 |
+
else self.config.text_config.initializer_range
|
154 |
+
)
|
155 |
+
|
156 |
+
if hasattr(module, "class_embedding"):
|
157 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
158 |
+
|
159 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
160 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
161 |
+
if module.bias is not None:
|
162 |
+
module.bias.data.zero_()
|
163 |
+
elif isinstance(module, nn.Embedding):
|
164 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
165 |
+
if module.padding_idx is not None:
|
166 |
+
module.weight.data[module.padding_idx].zero_()
|
167 |
+
|
168 |
+
@property
|
169 |
+
def _supports_sdpa(self):
|
170 |
+
"""
|
171 |
+
Retrieve language_model's attribute to check whether the model supports
|
172 |
+
SDPA or not.
|
173 |
+
"""
|
174 |
+
return self.language_model._supports_sdpa
|
175 |
+
|
176 |
+
|
177 |
+
MAGMA_INPUTS_DOCSTRING = r"""
|
178 |
+
Args:
|
179 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
180 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
181 |
+
it.
|
182 |
+
|
183 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
184 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
185 |
+
|
186 |
+
[What are input IDs?](../glossary#input-ids)
|
187 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
188 |
+
The tensors corresponding to the input images. Pixel values can be obtained using
|
189 |
+
[`AutoImageProcessor`]. See [`MagmaImageProcessor.__call__`] for details. [`MagmaProcessor`] uses
|
190 |
+
[`MagmaImageProcessor`] for processing images.
|
191 |
+
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
|
192 |
+
The sizes of the images in the batch, being (height, width) for each image.
|
193 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
194 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
195 |
+
|
196 |
+
- 1 for tokens that are **not masked**,
|
197 |
+
- 0 for tokens that are **masked**.
|
198 |
+
|
199 |
+
[What are attention masks?](../glossary#attention-mask)
|
200 |
+
|
201 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
202 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
203 |
+
|
204 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
205 |
+
`past_key_values`).
|
206 |
+
|
207 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
208 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
209 |
+
information on the default strategy.
|
210 |
+
|
211 |
+
- 1 indicates the head is **not masked**,
|
212 |
+
- 0 indicates the head is **masked**.
|
213 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
214 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
215 |
+
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
216 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
217 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
218 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
219 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
220 |
+
|
221 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
222 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
223 |
+
|
224 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
225 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
226 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
227 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
228 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
229 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
230 |
+
model's internal embedding lookup matrix.
|
231 |
+
vision_feature_layer (`int`, *optional*, defaults to -2):
|
232 |
+
The index of the layer to select the vision feature.
|
233 |
+
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
234 |
+
The feature selection strategy used to select the vision feature from the vision backbone.
|
235 |
+
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
|
236 |
+
If `"full"`, the full vision features are used.
|
237 |
+
use_cache (`bool`, *optional*):
|
238 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
239 |
+
`past_key_values`).
|
240 |
+
output_attentions (`bool`, *optional*):
|
241 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
242 |
+
tensors for more detail.
|
243 |
+
output_hidden_states (`bool`, *optional*):
|
244 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
245 |
+
more detail.
|
246 |
+
return_dict (`bool`, *optional*):
|
247 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
248 |
+
"""
|
249 |
+
|
250 |
+
@add_start_docstrings(
|
251 |
+
"""The Magma model which consists of a vision backbone and a language model.""",
|
252 |
+
MAGMA_START_DOCSTRING,
|
253 |
+
)
|
254 |
+
class MagmaForForCausalLM(MagmaPreTrainedModel):
|
255 |
+
def __init__(self, config: MagmaConfig):
|
256 |
+
super().__init__(config)
|
257 |
+
|
258 |
+
self.vision_tower = MagmaImageTower(config.vision_config, require_pretrained=False)
|
259 |
+
config.vision_config['mm_hidden_size'] = config.vision_config['mm_hidden_size'] \
|
260 |
+
if 'mm_hidden_size' in config.vision_config else self.vision_tower.hidden_size
|
261 |
+
config.vision_config['hidden_size'] = config.vision_config['hidden_size'] \
|
262 |
+
if 'hidden_size' in config.vision_config else self.config.text_config.hidden_size
|
263 |
+
self.multi_modal_projector = MagmaMultiModalProjector(config.vision_config)
|
264 |
+
|
265 |
+
self.vocab_size = config.text_config.vocab_size
|
266 |
+
if hasattr(config.text_config, 'auto_map'):
|
267 |
+
del config.text_config.auto_map
|
268 |
+
|
269 |
+
try:
|
270 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
271 |
+
config.text_config,
|
272 |
+
# attn_implementation=config._attn_implementation,
|
273 |
+
trust_remote_code=True
|
274 |
+
)
|
275 |
+
except:
|
276 |
+
self.language_model = AutoModelForCausalLM.from_pretrained(
|
277 |
+
config.text_config._name_or_path,
|
278 |
+
# attn_implementation=config._attn_implementation,
|
279 |
+
trust_remote_code=True
|
280 |
+
)
|
281 |
+
|
282 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
283 |
+
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
284 |
+
|
285 |
+
try:
|
286 |
+
if dist.get_rank() == 0:
|
287 |
+
wandb.init(project=os.environ['WANDB_PROJECT'])
|
288 |
+
except:
|
289 |
+
pass
|
290 |
+
|
291 |
+
self.post_init()
|
292 |
+
|
293 |
+
# def from_pretrained(self, pretrained_model_name_or_path, *model_args, **kwargs):
|
294 |
+
# import pdb; pdb.set_trace()
|
295 |
+
# kwargs["_from_auto"] = True
|
296 |
+
# return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
297 |
+
|
298 |
+
@property
|
299 |
+
def padding_side(self):
|
300 |
+
return self._padding_side
|
301 |
+
|
302 |
+
@padding_side.setter
|
303 |
+
def padding_side(self, padding_side: str):
|
304 |
+
if padding_side not in ["left", "right"]:
|
305 |
+
raise ValueError(f"{padding_side} is not `left` or `right`.")
|
306 |
+
self._padding_side = padding_side
|
307 |
+
|
308 |
+
def get_input_embeddings(self):
|
309 |
+
return self.language_model.get_input_embeddings()
|
310 |
+
|
311 |
+
def set_input_embeddings(self, value):
|
312 |
+
self.language_model.set_input_embeddings(value)
|
313 |
+
|
314 |
+
def get_output_embeddings(self):
|
315 |
+
return self.language_model.get_output_embeddings()
|
316 |
+
|
317 |
+
def set_output_embeddings(self, new_embeddings):
|
318 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
319 |
+
|
320 |
+
def set_decoder(self, decoder):
|
321 |
+
self.language_model.set_decoder(decoder)
|
322 |
+
|
323 |
+
def get_decoder(self):
|
324 |
+
return self.language_model.get_decoder()
|
325 |
+
|
326 |
+
def tie_weights(self):
|
327 |
+
return self.language_model.tie_weights()
|
328 |
+
|
329 |
+
def load_special_module_from_ckpt(self, ckpt_path, torch_dtype=None):
|
330 |
+
from deepspeed.runtime.zero import Init
|
331 |
+
from deepspeed import zero
|
332 |
+
# Defer initialization for ZeRO-3 compatibility
|
333 |
+
# with Init(data_parallel_group=None):
|
334 |
+
# # Initialize the special module
|
335 |
+
# self.vision_tower = MagmaImageTower(self.config.vision_config, require_pretrained=False)
|
336 |
+
|
337 |
+
# Load checkpoint weights into the special module
|
338 |
+
checkpoint = torch.load(ckpt_path, map_location='cpu')
|
339 |
+
state_dict = {k.replace('visual.', ''): v for k, v in checkpoint.items() if 'visual.' in k}
|
340 |
+
|
341 |
+
# Convert checkpoint weights to match model's parameter dtype
|
342 |
+
if torch_dtype is None:
|
343 |
+
model_dtype = next(self.vision_tower.clip_vision_model.parameters()).dtype
|
344 |
+
for k, v in state_dict.items():
|
345 |
+
state_dict[k] = v.to(model_dtype)
|
346 |
+
else:
|
347 |
+
for k, v in state_dict.items():
|
348 |
+
state_dict[k] = v.to(torch_dtype)
|
349 |
+
|
350 |
+
# Temporarily gather parameters for loading (if ZeRO-3 is active)
|
351 |
+
with zero.GatheredParameters(list(self.vision_tower.parameters()), modifier_rank=0):
|
352 |
+
# Load the state dictionary
|
353 |
+
self.vision_tower.clip_vision_model.load_state_dict(state_dict, strict=False)
|
354 |
+
# After loading, ensure the module is on the correct device
|
355 |
+
for param in self.vision_tower.parameters():
|
356 |
+
param.data = param.data.to(self.device).to(torch_dtype)
|
357 |
+
|
358 |
+
# import pdb; pdb.set_trace()
|
359 |
+
# If using a DeepSpeed engine, attach the updated module
|
360 |
+
if hasattr(self, "deepspeed_engine"):
|
361 |
+
self.deepspeed_engine.module = self
|
362 |
+
|
363 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
364 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
365 |
+
# update vocab size
|
366 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
367 |
+
self.vocab_size = model_embeds.num_embeddings
|
368 |
+
return model_embeds
|
369 |
+
|
370 |
+
def _merge_input_ids_with_image_features(
|
371 |
+
self,
|
372 |
+
image_features,
|
373 |
+
feature_lens,
|
374 |
+
inputs_embeds,
|
375 |
+
input_ids,
|
376 |
+
attention_mask,
|
377 |
+
position_ids=None,
|
378 |
+
labels=None,
|
379 |
+
image_token_index=None,
|
380 |
+
ignore_index=-100,
|
381 |
+
):
|
382 |
+
"""
|
383 |
+
Merge input_ids with with image features into final embeddings
|
384 |
+
|
385 |
+
Args:
|
386 |
+
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
|
387 |
+
All vision vectors of all images in the batch
|
388 |
+
feature_lens (`torch.LongTensor` of shape `(num_images)`):
|
389 |
+
The length of visual embeddings of each image as stacked in `image_features`
|
390 |
+
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
|
391 |
+
Token embeddings before merging with visual embeddings
|
392 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
393 |
+
Input_ids of tokens, possibly filled with image token
|
394 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
395 |
+
Mask to avoid performing attention on padding token indices.
|
396 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
397 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
398 |
+
config.n_positions - 1]`.
|
399 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
|
400 |
+
:abels need to be recalculated to support training (if provided)
|
401 |
+
image_token_index (`int`, *optional*)
|
402 |
+
Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
|
403 |
+
ignore_index (`int`, *optional*)
|
404 |
+
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
|
405 |
+
Returns:
|
406 |
+
final_embedding, final_attention_mask, position_ids, final_labels
|
407 |
+
|
408 |
+
Explanation:
|
409 |
+
each image has variable length embeddings, with length specified by feature_lens
|
410 |
+
image_features is concatenation of all visual embed vectors
|
411 |
+
task: fill each <image> with the correct number of visual embeddings
|
412 |
+
Example:
|
413 |
+
X (5 patches), Y (3 patches), Z (8)
|
414 |
+
X, Y are in the same sequence (in-context learning)
|
415 |
+
if right padding
|
416 |
+
input_ids: [
|
417 |
+
a b c d e f X g h i j k Y l m
|
418 |
+
o p q r Z s t u v _ _ _ _ _ _
|
419 |
+
]
|
420 |
+
input_ids should be: [
|
421 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
422 |
+
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
|
423 |
+
]
|
424 |
+
labels should be: [
|
425 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
426 |
+
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
|
427 |
+
]
|
428 |
+
elif left padding
|
429 |
+
input_ids: [
|
430 |
+
a b c d e f X g h i j k Y l m
|
431 |
+
_ _ _ _ _ _ o p q r Z s t u v
|
432 |
+
]
|
433 |
+
input_ids should be: [
|
434 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
435 |
+
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
|
436 |
+
]
|
437 |
+
labels should be: [
|
438 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
439 |
+
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
|
440 |
+
]
|
441 |
+
Edge cases:
|
442 |
+
* If tokens are same but image token sizes are different, then cannot infer left or right padding
|
443 |
+
|
444 |
+
input_ids: [
|
445 |
+
a b c d X g h
|
446 |
+
i j Y k l m n
|
447 |
+
]
|
448 |
+
where X is 3 tokens while Y is 5, this mean after merge
|
449 |
+
if left-padding (batched generation)
|
450 |
+
input_ids should be: [
|
451 |
+
_ _ a b c d X X X g h
|
452 |
+
i j Y Y Y Y Y k l m n
|
453 |
+
]
|
454 |
+
elif (right padding) (training)
|
455 |
+
input_ids should be: [
|
456 |
+
a b c d X X X g h _ _
|
457 |
+
i j Y Y Y Y Y k l m n
|
458 |
+
]
|
459 |
+
"""
|
460 |
+
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
|
461 |
+
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
|
462 |
+
|
463 |
+
with torch.no_grad():
|
464 |
+
num_images = feature_lens.size(0)
|
465 |
+
num_image_features, embed_dim = image_features.shape
|
466 |
+
if feature_lens.sum() != num_image_features:
|
467 |
+
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
|
468 |
+
batch_size = input_ids.shape[0]
|
469 |
+
_left_padding = torch.any(attention_mask[:, 0] == 0)
|
470 |
+
_right_padding = torch.any(attention_mask[:, -1] == 0)
|
471 |
+
|
472 |
+
left_padding = True
|
473 |
+
if batch_size > 1:
|
474 |
+
if _left_padding and not _right_padding:
|
475 |
+
left_padding = True
|
476 |
+
elif not _left_padding and _right_padding:
|
477 |
+
left_padding = False
|
478 |
+
elif not _left_padding and not _right_padding:
|
479 |
+
# both side is 1, so cannot tell
|
480 |
+
left_padding = self.padding_side == "left"
|
481 |
+
else:
|
482 |
+
# invalid attention_mask
|
483 |
+
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
|
484 |
+
|
485 |
+
# Whether to turn off right padding
|
486 |
+
# 1. Create a mask to know where special image tokens are
|
487 |
+
special_image_token_mask = input_ids == image_token_index
|
488 |
+
# special_image_token_mask: [bsz, seqlen]
|
489 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
490 |
+
# num_special_image_tokens: [bsz]
|
491 |
+
# Reserve for padding of num_images
|
492 |
+
total_num_special_image_tokens = torch.sum(special_image_token_mask)
|
493 |
+
if total_num_special_image_tokens != num_images:
|
494 |
+
raise ValueError(
|
495 |
+
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
|
496 |
+
)
|
497 |
+
# Compute the maximum embed dimension
|
498 |
+
# max_image_feature_lens is max_feature_lens per batch
|
499 |
+
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
|
500 |
+
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=feature_lens.device)
|
501 |
+
embed_sequence_lengths = (
|
502 |
+
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
|
503 |
+
)
|
504 |
+
max_embed_dim = embed_sequence_lengths.max()
|
505 |
+
|
506 |
+
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
|
507 |
+
# 2. Compute the positions where text should be written
|
508 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
509 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
|
510 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
511 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
512 |
+
# ! instead of special_image_token_mask * (num_image_patches - 1)
|
513 |
+
# special_image_token_mask * (num_feature_len - 1)
|
514 |
+
special_image_token_mask = special_image_token_mask.long()
|
515 |
+
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
|
516 |
+
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
|
517 |
+
if left_padding:
|
518 |
+
# shift right token positions so that they are ending at the same number
|
519 |
+
# the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
|
520 |
+
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
|
521 |
+
|
522 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
523 |
+
|
524 |
+
# 3. Create the full embedding, already padded to the maximum position
|
525 |
+
final_embedding = torch.zeros(
|
526 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
527 |
+
)
|
528 |
+
final_attention_mask = torch.zeros(
|
529 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
530 |
+
)
|
531 |
+
final_labels = None
|
532 |
+
if labels is not None:
|
533 |
+
# NOTE: this is a bug in the original code!!!
|
534 |
+
final_labels = torch.full_like(final_attention_mask.long(), ignore_index).to(torch.long)
|
535 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
536 |
+
# set the corresponding tensors into their correct target device.
|
537 |
+
target_device = inputs_embeds.device
|
538 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
539 |
+
batch_indices.to(target_device),
|
540 |
+
non_image_indices.to(target_device),
|
541 |
+
text_to_overwrite.to(target_device),
|
542 |
+
)
|
543 |
+
attention_mask = attention_mask.to(target_device)
|
544 |
+
|
545 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
546 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
547 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
548 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
549 |
+
if labels is not None:
|
550 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
551 |
+
|
552 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
553 |
+
with torch.no_grad():
|
554 |
+
image_to_overwrite = torch.full(
|
555 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
556 |
+
)
|
557 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
558 |
+
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
|
559 |
+
embed_indices = embed_indices.expand(batch_size, max_embed_dim)
|
560 |
+
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
|
561 |
+
|
562 |
+
if left_padding:
|
563 |
+
# exclude padding on the left
|
564 |
+
val = (max_embed_dim - embed_indices) <= embed_seq_lens
|
565 |
+
else:
|
566 |
+
# exclude padding on the right
|
567 |
+
val = embed_indices < embed_seq_lens
|
568 |
+
image_to_overwrite &= val
|
569 |
+
|
570 |
+
if image_to_overwrite.sum() != num_image_features:
|
571 |
+
raise ValueError(
|
572 |
+
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
|
573 |
+
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
574 |
+
f" the number of image given to the model is {num_images}. "
|
575 |
+
f"This prevents correct indexing and breaks batch generation."
|
576 |
+
)
|
577 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
578 |
+
final_attention_mask |= image_to_overwrite
|
579 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
580 |
+
|
581 |
+
return final_embedding, final_attention_mask, position_ids, final_labels
|
582 |
+
|
583 |
+
@add_start_docstrings_to_model_forward(MAGMA_INPUTS_DOCSTRING)
|
584 |
+
@replace_return_docstrings(output_type=MagmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
585 |
+
def forward(
|
586 |
+
self,
|
587 |
+
input_ids: torch.LongTensor = None,
|
588 |
+
pixel_values: Union[torch.FloatTensor, List[torch.FloatTensor], List[List[torch.FloatTensor]]] = None,
|
589 |
+
image_sizes: Union[torch.LongTensor, List[torch.LongTensor], List[List[torch.LongTensor]]] = None,
|
590 |
+
attention_mask: Optional[torch.Tensor] = None,
|
591 |
+
position_ids: Optional[torch.LongTensor] = None,
|
592 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
593 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
594 |
+
vision_feature_layer: Optional[int] = None,
|
595 |
+
vision_feature_select_strategy: Optional[str] = None,
|
596 |
+
labels: Optional[torch.LongTensor] = None,
|
597 |
+
use_cache: Optional[bool] = None,
|
598 |
+
output_attentions: Optional[bool] = None,
|
599 |
+
output_hidden_states: Optional[bool] = None,
|
600 |
+
return_dict: Optional[bool] = None,
|
601 |
+
) -> Union[Tuple, MagmaCausalLMOutputWithPast]:
|
602 |
+
r"""
|
603 |
+
Args:
|
604 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
605 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
606 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
607 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
608 |
+
|
609 |
+
Returns:
|
610 |
+
|
611 |
+
Example:
|
612 |
+
|
613 |
+
```python
|
614 |
+
>>> from PIL import Image
|
615 |
+
>>> import requests
|
616 |
+
>>> from transformers import AutoProcessor, MagmaForConditionalGeneration
|
617 |
+
|
618 |
+
>>> model = MagmaForConditionalGeneration.from_pretrained("microsoft/magma-8b-hf")
|
619 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/magma-8b-hf")
|
620 |
+
|
621 |
+
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
|
622 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
623 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
624 |
+
|
625 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
626 |
+
|
627 |
+
>>> # Generate
|
628 |
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
629 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
630 |
+
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
|
631 |
+
```"""
|
632 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
633 |
+
output_hidden_states = (
|
634 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
635 |
+
)
|
636 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
637 |
+
vision_feature_layer = (
|
638 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_config['vision_feature_layer']
|
639 |
+
)
|
640 |
+
|
641 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
642 |
+
|
643 |
+
if inputs_embeds is None:
|
644 |
+
# 1. Extract the input embeddings
|
645 |
+
# In case image_token_index is not in the embeddings (extra token but embedding don't have it)
|
646 |
+
for_inputs_embeds_ids = input_ids.clone()
|
647 |
+
for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0
|
648 |
+
inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids)
|
649 |
+
|
650 |
+
# 2. Merge text and images
|
651 |
+
if pixel_values is not None and input_ids.shape[1] != 1 and len(pixel_values) > 0:
|
652 |
+
# ! infer image_num_patches from image_sizes
|
653 |
+
if type(pixel_values) == list:
|
654 |
+
# nested list of pixel_values, each element is a list of pixel_values for each training instance, it could be multiple for video or interleaved setting
|
655 |
+
# e.g., pixel_values = [[img1, img2], [img1, img2, img3]]
|
656 |
+
n_imgs_per_sample = [len(pv) for pv in pixel_values]
|
657 |
+
pixels_values_list = sum(pixel_values, [])
|
658 |
+
image_sizes_list = sum(image_sizes, [])
|
659 |
+
else:
|
660 |
+
image_num_patches = [(imsize[imsize.sum(1) > 0,0] * imsize[imsize.sum(1) > 0,1]).tolist() for imsize in image_sizes]
|
661 |
+
# image_num_patches = [(imsize[:,0]*imsize[:,1]).tolist() for imsize in image_sizes]
|
662 |
+
# figure out if pixel_values is concatenated or stacked
|
663 |
+
if pixel_values.dim() == 5:
|
664 |
+
# stacking when input is (batch_size, num_patches, num_channels, height, width)
|
665 |
+
_pixel_values_list = [
|
666 |
+
pix_val[:sum(num_patch)].split(num_patch, dim=0) for pix_val, num_patch in zip(pixel_values, image_num_patches)
|
667 |
+
]
|
668 |
+
_image_sizes_list = [image_size[image_size.sum(-1) > 0].tolist() for image_size in image_sizes]
|
669 |
+
elif pixel_values.dim() != 4:
|
670 |
+
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
|
671 |
+
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
|
672 |
+
|
673 |
+
if self.config.vision_config['img_anyres_strategy'] == "global":
|
674 |
+
selected_image_features = []
|
675 |
+
# NOTE: both _image_sizes_list and _pixel_values_list are lists of lists, each item represents an training instance with one or multiple images
|
676 |
+
for idx, (image_size_for_instance, pixel_values_for_instance) in enumerate(zip(_image_sizes_list, _pixel_values_list)):
|
677 |
+
assert len(image_size_for_instance) == len(pixel_values_for_instance), f"{len(image_size_for_instance)} != {len(pixel_values_for_instance)}"
|
678 |
+
for image_size, pixel_values_for_image in zip(image_size_for_instance, pixel_values_for_instance):
|
679 |
+
pixel_values_for_image = pixel_values_for_image.view(image_size[0], image_size[1], *pixel_values_for_image.shape[1:])
|
680 |
+
pixel_values_for_image = pixel_values_for_image.permute(2, 0, 3, 1, 4).flatten(3, 4).flatten(1, 2).unsqueeze(0)
|
681 |
+
image_features = self.vision_tower(pixel_values_for_image)
|
682 |
+
selected_image_feature = image_features[vision_feature_layer][0].permute(1, 2, 0)
|
683 |
+
selected_image_feature = self.multi_modal_projector((selected_image_feature, None))
|
684 |
+
selected_image_feature = torch.cat((selected_image_feature, self.multi_modal_projector.row_seperator.repeat(selected_image_feature.shape[0],1,1)), dim=1)
|
685 |
+
selected_image_features.append(selected_image_feature.flatten(0, 1))
|
686 |
+
elif self.config.vision_config['img_anyres_strategy'] == "crop":
|
687 |
+
# calculate number of crops for each instance in the batch given _image_sizes_list
|
688 |
+
_image_sizes_list_temp = sum(_image_sizes_list, [])
|
689 |
+
# concate nate all images in _pixel_values_list
|
690 |
+
_pixel_values_list_temp = sum(_pixel_values_list, ())
|
691 |
+
_pixel_values_list_temp = torch.cat(_pixel_values_list_temp, dim=0)
|
692 |
+
image_features = self.vision_tower(_pixel_values_list_temp)[vision_feature_layer].permute(0, 2, 3, 1)
|
693 |
+
image_features = self.multi_modal_projector((image_features, None))
|
694 |
+
|
695 |
+
num_crops_list = [_image_size[0]*_image_size[1] for _image_size in _image_sizes_list_temp]
|
696 |
+
image_features_split = torch.split(image_features, num_crops_list, dim=0)
|
697 |
+
selected_image_features = []
|
698 |
+
for image_feature, image_size in zip(image_features_split, _image_sizes_list_temp):
|
699 |
+
image_feature = image_feature.view(image_size[0], image_size[1], *image_feature.shape[1:])
|
700 |
+
image_feature = image_feature.permute(0, 2, 1, 3, 4).flatten(2, 3).flatten(0, 1)
|
701 |
+
image_feature = torch.cat((image_feature, self.multi_modal_projector.row_seperator.repeat(image_feature.shape[0],1,1)), dim=1)
|
702 |
+
selected_image_features.append(image_feature.flatten(0, 1))
|
703 |
+
|
704 |
+
# raise NotImplementedError("crop strategy is not implemented yet")
|
705 |
+
# image_features = self.vision_tower(pixel_values)
|
706 |
+
# selected_image_feature = image_features[vision_feature_layer]
|
707 |
+
# image_features = torch.split(image_features, image_num_patches, dim=0)
|
708 |
+
|
709 |
+
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
|
710 |
+
feature_lens = [elem.shape[0] for elem in selected_image_features]
|
711 |
+
image_features = torch.cat(selected_image_features, 0)
|
712 |
+
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
|
713 |
+
|
714 |
+
# inputs_embeds = inputs_embeds.to(image_features.dtype)
|
715 |
+
inputs_embeds, attention_mask, position_ids, labels = self._merge_input_ids_with_image_features(
|
716 |
+
image_features,
|
717 |
+
feature_lens,
|
718 |
+
inputs_embeds,
|
719 |
+
input_ids,
|
720 |
+
attention_mask,
|
721 |
+
position_ids,
|
722 |
+
labels=labels,
|
723 |
+
)
|
724 |
+
|
725 |
+
# pixel_values is not None but is empty ---> text only cases
|
726 |
+
elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0:
|
727 |
+
# there are no images
|
728 |
+
pass
|
729 |
+
|
730 |
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
731 |
+
# generation with cache
|
732 |
+
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
|
733 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
734 |
+
# that are set to 0
|
735 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
736 |
+
|
737 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
738 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
739 |
+
|
740 |
+
# Get the target length
|
741 |
+
target_length = input_ids.shape[1]
|
742 |
+
past_length = first_layer_past_key_value.shape[-1]
|
743 |
+
|
744 |
+
extended_attention_mask = torch.ones(
|
745 |
+
(attention_mask.shape[0], past_length),
|
746 |
+
dtype=attention_mask.dtype,
|
747 |
+
device=attention_mask.device,
|
748 |
+
)
|
749 |
+
|
750 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
751 |
+
# if one uses Llava + Fused modules where the cache on the
|
752 |
+
# first iteration is already big enough, or if one passes custom cache
|
753 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
754 |
+
new_batch_index = batch_index[valid_indices]
|
755 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
756 |
+
|
757 |
+
# Zero-out the places where we don't need to attend
|
758 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
759 |
+
|
760 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
761 |
+
|
762 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
763 |
+
|
764 |
+
# outputs = self.language_model(
|
765 |
+
# attention_mask=attention_mask,
|
766 |
+
# position_ids=position_ids,
|
767 |
+
# past_key_values=past_key_values,
|
768 |
+
# inputs_embeds=inputs_embeds,
|
769 |
+
# use_cache=use_cache,
|
770 |
+
# output_attentions=output_attentions,
|
771 |
+
# output_hidden_states=output_hidden_states,
|
772 |
+
# return_dict=return_dict,
|
773 |
+
# )
|
774 |
+
|
775 |
+
# logits = outputs[0]
|
776 |
+
# loss = None
|
777 |
+
# if labels is not None:
|
778 |
+
# # Shift so that tokens < n predict n
|
779 |
+
# if attention_mask is not None:
|
780 |
+
# shift_attention_mask = attention_mask[..., 1:]
|
781 |
+
# shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
782 |
+
# shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
783 |
+
# else:
|
784 |
+
# shift_logits = logits[..., :-1, :].contiguous()
|
785 |
+
# shift_labels = labels[..., 1:].contiguous()
|
786 |
+
# # Flatten the tokens
|
787 |
+
# loss_fct = nn.CrossEntropyLoss()
|
788 |
+
# loss = loss_fct(
|
789 |
+
# shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
790 |
+
# )
|
791 |
+
|
792 |
+
outputs = self.language_model.model(
|
793 |
+
attention_mask=attention_mask,
|
794 |
+
position_ids=position_ids,
|
795 |
+
past_key_values=past_key_values,
|
796 |
+
inputs_embeds=inputs_embeds,
|
797 |
+
use_cache=use_cache,
|
798 |
+
output_attentions=output_attentions,
|
799 |
+
output_hidden_states=output_hidden_states,
|
800 |
+
return_dict=return_dict
|
801 |
+
)
|
802 |
+
|
803 |
+
hidden_states = outputs[0]
|
804 |
+
|
805 |
+
loss = None
|
806 |
+
|
807 |
+
if labels is not None and self.training:
|
808 |
+
valid_mask = labels[..., 1:] != -100
|
809 |
+
shift_logits = self.language_model.lm_head(hidden_states[:,:-1][valid_mask]).contiguous()
|
810 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
811 |
+
logits = shift_logits # dummy logits
|
812 |
+
shift_labels = labels[..., 1:][valid_mask].contiguous()
|
813 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
814 |
+
loss_fct = nn.CrossEntropyLoss()
|
815 |
+
loss = loss_fct(shift_logits, shift_labels)
|
816 |
+
|
817 |
+
# localize the positions for shift_labels where the id is in betweek [config.tokenizer_vocab_size-256, config.tokenizer_vocab_size]
|
818 |
+
valid_indices = (shift_labels<self.config.tokenizer_vocab_size) & (shift_labels>=self.config.tokenizer_vocab_size-256)
|
819 |
+
if valid_indices.sum() > 0:
|
820 |
+
action_labels = shift_labels[valid_indices]
|
821 |
+
action_logits = shift_logits[valid_indices]
|
822 |
+
# calcualte the accuracy
|
823 |
+
action_accuracy = (action_logits.argmax(-1) == action_labels).float().mean()
|
824 |
+
# log the action accuracy
|
825 |
+
else:
|
826 |
+
action_accuracy = torch.tensor(0.0).to(shift_logits.device)
|
827 |
+
# torch distributed gather the action accuracy across all devices
|
828 |
+
action_accuracy = action_accuracy.unsqueeze(0)
|
829 |
+
# gather the action accuracy across all devices
|
830 |
+
action_accuracy_gather = [torch.zeros_like(action_accuracy) for _ in range(dist.get_world_size())]
|
831 |
+
dist.all_gather(action_accuracy_gather, action_accuracy)
|
832 |
+
# concatenate the action accuracy across all devices
|
833 |
+
action_accuracy = torch.cat(action_accuracy_gather)
|
834 |
+
|
835 |
+
if dist.get_rank() == 0:
|
836 |
+
# remove zero values
|
837 |
+
if action_accuracy.mean() == 0:
|
838 |
+
wandb.log({"action_accuracy": action_accuracy.mean().item()})
|
839 |
+
else:
|
840 |
+
action_accuracy = action_accuracy[action_accuracy != 0]
|
841 |
+
wandb.log({"action_accuracy": action_accuracy.mean().item()})
|
842 |
+
else:
|
843 |
+
logits = self.language_model.lm_head(hidden_states)
|
844 |
+
logits = logits.float()
|
845 |
+
|
846 |
+
if not return_dict:
|
847 |
+
output = (logits,) + outputs[1:]
|
848 |
+
return (loss,) + output if loss is not None else output
|
849 |
+
|
850 |
+
return MagmaCausalLMOutputWithPast(
|
851 |
+
loss=loss,
|
852 |
+
logits=logits,
|
853 |
+
past_key_values=outputs.past_key_values,
|
854 |
+
hidden_states=outputs.hidden_states,
|
855 |
+
attentions=outputs.attentions,
|
856 |
+
)
|
857 |
+
|
858 |
+
def prepare_inputs_for_generation(
|
859 |
+
self,
|
860 |
+
input_ids,
|
861 |
+
past_key_values=None,
|
862 |
+
inputs_embeds=None,
|
863 |
+
pixel_values=None,
|
864 |
+
image_sizes=None,
|
865 |
+
attention_mask=None,
|
866 |
+
**kwargs,
|
867 |
+
):
|
868 |
+
if past_key_values is not None:
|
869 |
+
if isinstance(past_key_values, Cache):
|
870 |
+
cache_length = past_key_values.get_seq_length()
|
871 |
+
past_length = past_key_values.seen_tokens
|
872 |
+
else:
|
873 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
874 |
+
|
875 |
+
# Keep only the unprocessed tokens:
|
876 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
877 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
878 |
+
# input)
|
879 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
880 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
881 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
882 |
+
# input_ids based on the past_length.
|
883 |
+
elif past_length < input_ids.shape[1]:
|
884 |
+
input_ids = input_ids[:, past_length:]
|
885 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
886 |
+
elif self.config.image_token_index in input_ids:
|
887 |
+
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
888 |
+
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
889 |
+
# older attention values, as their corresponding values are not part of the input.
|
890 |
+
if cache_length < past_length and attention_mask is not None:
|
891 |
+
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
|
892 |
+
|
893 |
+
position_ids = kwargs.get("position_ids", None)
|
894 |
+
if attention_mask is not None and position_ids is None:
|
895 |
+
# create position_ids on the fly for batch generation
|
896 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
897 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
898 |
+
if past_key_values:
|
899 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
900 |
+
|
901 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
902 |
+
if inputs_embeds is not None and past_key_values is None:
|
903 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
904 |
+
else:
|
905 |
+
model_inputs = {"input_ids": input_ids}
|
906 |
+
|
907 |
+
model_inputs.update(
|
908 |
+
{
|
909 |
+
"position_ids": position_ids,
|
910 |
+
"past_key_values": past_key_values,
|
911 |
+
"use_cache": kwargs.get("use_cache"),
|
912 |
+
"attention_mask": attention_mask,
|
913 |
+
"pixel_values": pixel_values,
|
914 |
+
"image_sizes": image_sizes,
|
915 |
+
}
|
916 |
+
)
|
917 |
+
return model_inputs
|
918 |
+
|
919 |
+
def _reorder_cache(self, *args, **kwargs):
|
920 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
921 |
+
|
922 |
+
@add_start_docstrings(
|
923 |
+
"""The Magma model which consists of a vision backbone and a language model.""",
|
924 |
+
MAGMA_START_DOCSTRING,
|
925 |
+
)
|
926 |
+
class MagmaForConditionalGeneration(MagmaPreTrainedModel):
|
927 |
+
def __init__(self, config: MagmaConfig):
|
928 |
+
super().__init__(config)
|
929 |
+
|
930 |
+
self.vision_tower = MagmaImageTower(config.vision_config, require_pretrained=('magma' not in config.name_or_path))
|
931 |
+
self.multi_modal_projector = MagmaMultiModalProjector(config.vision_config)
|
932 |
+
|
933 |
+
self.vocab_size = config.text_config.vocab_size
|
934 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
935 |
+
config.text_config,
|
936 |
+
# attn_implementation=config._attn_implementation,
|
937 |
+
trust_remote_code=True
|
938 |
+
)
|
939 |
+
|
940 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
941 |
+
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
942 |
+
|
943 |
+
self.post_init()
|
944 |
+
|
945 |
+
@property
|
946 |
+
def padding_side(self):
|
947 |
+
return self._padding_side
|
948 |
+
|
949 |
+
@padding_side.setter
|
950 |
+
def padding_side(self, padding_side: str):
|
951 |
+
if padding_side not in ["left", "right"]:
|
952 |
+
raise ValueError(f"{padding_side} is not `left` or `right`.")
|
953 |
+
self._padding_side = padding_side
|
954 |
+
|
955 |
+
def get_input_embeddings(self):
|
956 |
+
return self.language_model.get_input_embeddings()
|
957 |
+
|
958 |
+
def set_input_embeddings(self, value):
|
959 |
+
self.language_model.set_input_embeddings(value)
|
960 |
+
|
961 |
+
def get_output_embeddings(self):
|
962 |
+
return self.language_model.get_output_embeddings()
|
963 |
+
|
964 |
+
def set_output_embeddings(self, new_embeddings):
|
965 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
966 |
+
|
967 |
+
def set_decoder(self, decoder):
|
968 |
+
self.language_model.set_decoder(decoder)
|
969 |
+
|
970 |
+
def get_decoder(self):
|
971 |
+
return self.language_model.get_decoder()
|
972 |
+
|
973 |
+
def tie_weights(self):
|
974 |
+
return self.language_model.tie_weights()
|
975 |
+
|
976 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
977 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
978 |
+
# update vocab size
|
979 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
980 |
+
self.vocab_size = model_embeds.num_embeddings
|
981 |
+
return model_embeds
|
982 |
+
|
983 |
+
def _merge_input_ids_with_image_features(
|
984 |
+
self,
|
985 |
+
image_features,
|
986 |
+
feature_lens,
|
987 |
+
inputs_embeds,
|
988 |
+
input_ids,
|
989 |
+
attention_mask,
|
990 |
+
position_ids=None,
|
991 |
+
labels=None,
|
992 |
+
image_token_index=None,
|
993 |
+
ignore_index=-100,
|
994 |
+
):
|
995 |
+
"""
|
996 |
+
Merge input_ids with with image features into final embeddings
|
997 |
+
|
998 |
+
Args:
|
999 |
+
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
|
1000 |
+
All vision vectors of all images in the batch
|
1001 |
+
feature_lens (`torch.LongTensor` of shape `(num_images)`):
|
1002 |
+
The length of visual embeddings of each image as stacked in `image_features`
|
1003 |
+
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
|
1004 |
+
Token embeddings before merging with visual embeddings
|
1005 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1006 |
+
Input_ids of tokens, possibly filled with image token
|
1007 |
+
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1008 |
+
Mask to avoid performing attention on padding token indices.
|
1009 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1010 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1011 |
+
config.n_positions - 1]`.
|
1012 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
|
1013 |
+
:abels need to be recalculated to support training (if provided)
|
1014 |
+
image_token_index (`int`, *optional*)
|
1015 |
+
Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
|
1016 |
+
ignore_index (`int`, *optional*)
|
1017 |
+
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
|
1018 |
+
Returns:
|
1019 |
+
final_embedding, final_attention_mask, position_ids, final_labels
|
1020 |
+
|
1021 |
+
Explanation:
|
1022 |
+
each image has variable length embeddings, with length specified by feature_lens
|
1023 |
+
image_features is concatenation of all visual embed vectors
|
1024 |
+
task: fill each <image> with the correct number of visual embeddings
|
1025 |
+
Example:
|
1026 |
+
X (5 patches), Y (3 patches), Z (8)
|
1027 |
+
X, Y are in the same sequence (in-context learning)
|
1028 |
+
if right padding
|
1029 |
+
input_ids: [
|
1030 |
+
a b c d e f X g h i j k Y l m
|
1031 |
+
o p q r Z s t u v _ _ _ _ _ _
|
1032 |
+
]
|
1033 |
+
input_ids should be: [
|
1034 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
1035 |
+
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
|
1036 |
+
]
|
1037 |
+
labels should be: [
|
1038 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
1039 |
+
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
|
1040 |
+
]
|
1041 |
+
elif left padding
|
1042 |
+
input_ids: [
|
1043 |
+
a b c d e f X g h i j k Y l m
|
1044 |
+
_ _ _ _ _ _ o p q r Z s t u v
|
1045 |
+
]
|
1046 |
+
input_ids should be: [
|
1047 |
+
a b c d e f X X X X X g h i j k Y Y Y l m
|
1048 |
+
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
|
1049 |
+
]
|
1050 |
+
labels should be: [
|
1051 |
+
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
|
1052 |
+
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
|
1053 |
+
]
|
1054 |
+
Edge cases:
|
1055 |
+
* If tokens are same but image token sizes are different, then cannot infer left or right padding
|
1056 |
+
|
1057 |
+
input_ids: [
|
1058 |
+
a b c d X g h
|
1059 |
+
i j Y k l m n
|
1060 |
+
]
|
1061 |
+
where X is 3 tokens while Y is 5, this mean after merge
|
1062 |
+
if left-padding (batched generation)
|
1063 |
+
input_ids should be: [
|
1064 |
+
_ _ a b c d X X X g h
|
1065 |
+
i j Y Y Y Y Y k l m n
|
1066 |
+
]
|
1067 |
+
elif (right padding) (training)
|
1068 |
+
input_ids should be: [
|
1069 |
+
a b c d X X X g h _ _
|
1070 |
+
i j Y Y Y Y Y k l m n
|
1071 |
+
]
|
1072 |
+
"""
|
1073 |
+
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
|
1074 |
+
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
|
1075 |
+
|
1076 |
+
with torch.no_grad():
|
1077 |
+
num_images = feature_lens.size(0)
|
1078 |
+
num_image_features, embed_dim = image_features.shape
|
1079 |
+
if feature_lens.sum() != num_image_features:
|
1080 |
+
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
|
1081 |
+
batch_size = input_ids.shape[0]
|
1082 |
+
_left_padding = torch.any(attention_mask[:, 0] == 0)
|
1083 |
+
_right_padding = torch.any(attention_mask[:, -1] == 0)
|
1084 |
+
|
1085 |
+
left_padding = True
|
1086 |
+
if batch_size > 1:
|
1087 |
+
if _left_padding and not _right_padding:
|
1088 |
+
left_padding = True
|
1089 |
+
elif not _left_padding and _right_padding:
|
1090 |
+
left_padding = False
|
1091 |
+
elif not _left_padding and not _right_padding:
|
1092 |
+
# both side is 1, so cannot tell
|
1093 |
+
left_padding = self.padding_side == "left"
|
1094 |
+
else:
|
1095 |
+
# invalid attention_mask
|
1096 |
+
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
|
1097 |
+
|
1098 |
+
# Whether to turn off right padding
|
1099 |
+
# 1. Create a mask to know where special image tokens are
|
1100 |
+
special_image_token_mask = input_ids == image_token_index
|
1101 |
+
# special_image_token_mask: [bsz, seqlen]
|
1102 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
1103 |
+
# num_special_image_tokens: [bsz]
|
1104 |
+
# Reserve for padding of num_images
|
1105 |
+
total_num_special_image_tokens = torch.sum(special_image_token_mask)
|
1106 |
+
if total_num_special_image_tokens != num_images:
|
1107 |
+
raise ValueError(
|
1108 |
+
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
|
1109 |
+
)
|
1110 |
+
# Compute the maximum embed dimension
|
1111 |
+
# max_image_feature_lens is max_feature_lens per batch
|
1112 |
+
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
|
1113 |
+
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=feature_lens.device)
|
1114 |
+
embed_sequence_lengths = (
|
1115 |
+
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
|
1116 |
+
)
|
1117 |
+
max_embed_dim = embed_sequence_lengths.max()
|
1118 |
+
|
1119 |
+
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
|
1120 |
+
# 2. Compute the positions where text should be written
|
1121 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
1122 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
|
1123 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
1124 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
1125 |
+
# ! instead of special_image_token_mask * (num_image_patches - 1)
|
1126 |
+
# special_image_token_mask * (num_feature_len - 1)
|
1127 |
+
special_image_token_mask = special_image_token_mask.long()
|
1128 |
+
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
|
1129 |
+
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
|
1130 |
+
if left_padding:
|
1131 |
+
# shift right token positions so that they are ending at the same number
|
1132 |
+
# the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
|
1133 |
+
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
|
1134 |
+
|
1135 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
1136 |
+
|
1137 |
+
# 3. Create the full embedding, already padded to the maximum position
|
1138 |
+
final_embedding = torch.zeros(
|
1139 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
1140 |
+
)
|
1141 |
+
final_attention_mask = torch.zeros(
|
1142 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
1143 |
+
)
|
1144 |
+
final_labels = None
|
1145 |
+
if labels is not None:
|
1146 |
+
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
|
1147 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
1148 |
+
# set the corresponding tensors into their correct target device.
|
1149 |
+
target_device = inputs_embeds.device
|
1150 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
1151 |
+
batch_indices.to(target_device),
|
1152 |
+
non_image_indices.to(target_device),
|
1153 |
+
text_to_overwrite.to(target_device),
|
1154 |
+
)
|
1155 |
+
attention_mask = attention_mask.to(target_device)
|
1156 |
+
|
1157 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
1158 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
1159 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
1160 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
1161 |
+
if labels is not None:
|
1162 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
1163 |
+
|
1164 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
1165 |
+
with torch.no_grad():
|
1166 |
+
image_to_overwrite = torch.full(
|
1167 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
1168 |
+
)
|
1169 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
1170 |
+
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
|
1171 |
+
embed_indices = embed_indices.expand(batch_size, max_embed_dim)
|
1172 |
+
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
|
1173 |
+
|
1174 |
+
if left_padding:
|
1175 |
+
# exclude padding on the left
|
1176 |
+
val = (max_embed_dim - embed_indices) <= embed_seq_lens
|
1177 |
+
else:
|
1178 |
+
# exclude padding on the right
|
1179 |
+
val = embed_indices < embed_seq_lens
|
1180 |
+
image_to_overwrite &= val
|
1181 |
+
|
1182 |
+
if image_to_overwrite.sum() != num_image_features:
|
1183 |
+
raise ValueError(
|
1184 |
+
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
|
1185 |
+
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
1186 |
+
f" the number of image given to the model is {num_images}. "
|
1187 |
+
f"This prevents correct indexing and breaks batch generation."
|
1188 |
+
)
|
1189 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
1190 |
+
final_attention_mask |= image_to_overwrite
|
1191 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
1192 |
+
|
1193 |
+
return final_embedding, final_attention_mask, position_ids, final_labels
|
1194 |
+
|
1195 |
+
@add_start_docstrings_to_model_forward(MAGMA_INPUTS_DOCSTRING)
|
1196 |
+
@replace_return_docstrings(output_type=MagmaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1197 |
+
def forward(
|
1198 |
+
self,
|
1199 |
+
input_ids: torch.LongTensor = None,
|
1200 |
+
pixel_values: torch.FloatTensor = None,
|
1201 |
+
image_sizes: Optional[torch.LongTensor] = None,
|
1202 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1203 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1204 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1205 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1206 |
+
vision_feature_layer: Optional[int] = None,
|
1207 |
+
vision_feature_select_strategy: Optional[str] = None,
|
1208 |
+
labels: Optional[torch.LongTensor] = None,
|
1209 |
+
use_cache: Optional[bool] = None,
|
1210 |
+
output_attentions: Optional[bool] = None,
|
1211 |
+
output_hidden_states: Optional[bool] = None,
|
1212 |
+
return_dict: Optional[bool] = None,
|
1213 |
+
) -> Union[Tuple, MagmaCausalLMOutputWithPast]:
|
1214 |
+
r"""
|
1215 |
+
Args:
|
1216 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1217 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1218 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1219 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1220 |
+
|
1221 |
+
Returns:
|
1222 |
+
|
1223 |
+
Example:
|
1224 |
+
|
1225 |
+
```python
|
1226 |
+
>>> from PIL import Image
|
1227 |
+
>>> import requests
|
1228 |
+
>>> from transformers import AutoProcessor, MagmaForConditionalGeneration
|
1229 |
+
|
1230 |
+
>>> model = MagmaForConditionalGeneration.from_pretrained("microsoft/magma-8b-hf")
|
1231 |
+
>>> processor = AutoProcessor.from_pretrained("microsoft/magma-8b-hf")
|
1232 |
+
|
1233 |
+
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
|
1234 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
1235 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1236 |
+
|
1237 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
1238 |
+
|
1239 |
+
>>> # Generate
|
1240 |
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
1241 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1242 |
+
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
|
1243 |
+
```"""
|
1244 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1245 |
+
output_hidden_states = (
|
1246 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1247 |
+
)
|
1248 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1249 |
+
vision_feature_layer = (
|
1250 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_config['vision_feature_layer']
|
1251 |
+
)
|
1252 |
+
|
1253 |
+
if inputs_embeds is None:
|
1254 |
+
# 1. Extract the input embeddings
|
1255 |
+
# In case image_token_index is not in the embeddings (extra token but embedding don't have it)
|
1256 |
+
for_inputs_embeds_ids = input_ids.clone()
|
1257 |
+
for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0
|
1258 |
+
inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids)
|
1259 |
+
|
1260 |
+
# 2. Merge text and images
|
1261 |
+
if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0:
|
1262 |
+
# ! infer image_num_patches from image_sizes
|
1263 |
+
# figure out if pixel_values is concatenated or stacked
|
1264 |
+
if pixel_values.dim() == 5:
|
1265 |
+
image_num_patches = [(imsize[:,0]*imsize[:,1]).tolist() for imsize in image_sizes]
|
1266 |
+
# stacking when input is (batch_size, num_patches, num_channels, height, width)
|
1267 |
+
_pixel_values_list = [
|
1268 |
+
pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)
|
1269 |
+
]
|
1270 |
+
pixel_values = torch.cat(_pixel_values_list, dim=0)
|
1271 |
+
elif pixel_values.dim() != 4:
|
1272 |
+
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
|
1273 |
+
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
|
1274 |
+
|
1275 |
+
if self.config.vision_config['img_anyres_strategy'] == "global":
|
1276 |
+
num_patches_for_images = [(imsize[0]*imsize[1]).item() for imsize in image_sizes]
|
1277 |
+
pixel_values_for_images = pixel_values.split(num_patches_for_images, dim=0)
|
1278 |
+
selected_image_features = []
|
1279 |
+
for idx, (image_size, pixel_values_for_image) in enumerate(zip(image_sizes, pixel_values_for_images)):
|
1280 |
+
pixel_values_for_image = pixel_values_for_image.view(image_size[0], image_size[1], *pixel_values_for_image.shape[1:])
|
1281 |
+
pixel_values_for_image = pixel_values_for_image.permute(2, 0, 3, 1, 4).flatten(3, 4).flatten(1, 2).unsqueeze(0)
|
1282 |
+
image_features = self.vision_tower(pixel_values_for_image)
|
1283 |
+
selected_image_feature = image_features[vision_feature_layer][0].permute(1, 2, 0)
|
1284 |
+
selected_image_feature = self.multi_modal_projector((selected_image_feature, None))
|
1285 |
+
selected_image_feature = torch.cat((selected_image_feature, self.multi_modal_projector.row_seperator.repeat(selected_image_feature.shape[0],1,1)), dim=1)
|
1286 |
+
selected_image_features.append(selected_image_feature)
|
1287 |
+
elif self.config.vision_config['img_anyres_strategy'] == "crop":
|
1288 |
+
image_features = self.vision_tower(pixel_values)[vision_feature_layer].permute(0, 2, 3, 1)
|
1289 |
+
image_features = self.multi_modal_projector((image_features, None))
|
1290 |
+
num_patches_for_images = [(imsize[0]*imsize[1]).item() for imsize in image_sizes]
|
1291 |
+
image_features_split = torch.split(image_features, num_patches_for_images, dim=0)
|
1292 |
+
selected_image_features = []
|
1293 |
+
for image_feature, image_size in zip(image_features_split, image_sizes):
|
1294 |
+
image_feature = image_feature.view(image_size[0], image_size[1], *image_feature.shape[1:])
|
1295 |
+
image_feature = image_feature.permute(0, 2, 1, 3, 4).flatten(2, 3).flatten(0, 1)
|
1296 |
+
image_feature = torch.cat((image_feature, self.multi_modal_projector.row_seperator.repeat(image_feature.shape[0],1,1)), dim=1)
|
1297 |
+
selected_image_features.append(image_feature)
|
1298 |
+
|
1299 |
+
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
|
1300 |
+
feature_lens = [elem.shape[0]*elem.shape[1] for elem in selected_image_features]
|
1301 |
+
image_features = torch.cat([elem.flatten(0, 1) for elem in selected_image_features], 0)
|
1302 |
+
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
|
1303 |
+
|
1304 |
+
# inputs_embeds = inputs_embeds.to(image_features.dtype)
|
1305 |
+
inputs_embeds, attention_mask, position_ids, labels = self._merge_input_ids_with_image_features(
|
1306 |
+
image_features,
|
1307 |
+
feature_lens,
|
1308 |
+
inputs_embeds,
|
1309 |
+
input_ids,
|
1310 |
+
attention_mask,
|
1311 |
+
position_ids,
|
1312 |
+
labels=labels,
|
1313 |
+
)
|
1314 |
+
|
1315 |
+
# pixel_values is not None but is empty ---> text only cases
|
1316 |
+
elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0:
|
1317 |
+
# there are no images
|
1318 |
+
pass
|
1319 |
+
|
1320 |
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
1321 |
+
# generation with cache
|
1322 |
+
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
|
1323 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
1324 |
+
# that are set to 0
|
1325 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
1326 |
+
|
1327 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
1328 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
1329 |
+
|
1330 |
+
# Get the target length
|
1331 |
+
target_length = input_ids.shape[1]
|
1332 |
+
past_length = first_layer_past_key_value.shape[-1]
|
1333 |
+
|
1334 |
+
extended_attention_mask = torch.ones(
|
1335 |
+
(attention_mask.shape[0], past_length),
|
1336 |
+
dtype=attention_mask.dtype,
|
1337 |
+
device=attention_mask.device,
|
1338 |
+
)
|
1339 |
+
|
1340 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
1341 |
+
# if one uses Llava + Fused modules where the cache on the
|
1342 |
+
# first iteration is already big enough, or if one passes custom cache
|
1343 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
1344 |
+
new_batch_index = batch_index[valid_indices]
|
1345 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
1346 |
+
|
1347 |
+
# Zero-out the places where we don't need to attend
|
1348 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
1349 |
+
|
1350 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
1351 |
+
|
1352 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
1353 |
+
|
1354 |
+
outputs = self.language_model(
|
1355 |
+
attention_mask=attention_mask,
|
1356 |
+
position_ids=position_ids,
|
1357 |
+
past_key_values=past_key_values,
|
1358 |
+
inputs_embeds=inputs_embeds,
|
1359 |
+
use_cache=use_cache,
|
1360 |
+
output_attentions=output_attentions,
|
1361 |
+
output_hidden_states=output_hidden_states,
|
1362 |
+
return_dict=return_dict,
|
1363 |
+
)
|
1364 |
+
|
1365 |
+
logits = outputs[0]
|
1366 |
+
|
1367 |
+
loss = None
|
1368 |
+
if labels is not None:
|
1369 |
+
# Shift so that tokens < n predict n
|
1370 |
+
if attention_mask is not None:
|
1371 |
+
shift_attention_mask = attention_mask[..., 1:]
|
1372 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
1373 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
1374 |
+
else:
|
1375 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1376 |
+
shift_labels = labels[..., 1:].contiguous()
|
1377 |
+
# Flatten the tokens
|
1378 |
+
loss_fct = nn.CrossEntropyLoss()
|
1379 |
+
loss = loss_fct(
|
1380 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
if not return_dict:
|
1384 |
+
output = (logits,) + outputs[1:]
|
1385 |
+
return (loss,) + output if loss is not None else output
|
1386 |
+
|
1387 |
+
return MagmaCausalLMOutputWithPast(
|
1388 |
+
loss=loss,
|
1389 |
+
logits=logits,
|
1390 |
+
past_key_values=outputs.past_key_values,
|
1391 |
+
hidden_states=outputs.hidden_states,
|
1392 |
+
attentions=outputs.attentions,
|
1393 |
+
)
|
1394 |
+
|
1395 |
+
def prepare_inputs_for_generation(
|
1396 |
+
self,
|
1397 |
+
input_ids,
|
1398 |
+
past_key_values=None,
|
1399 |
+
inputs_embeds=None,
|
1400 |
+
pixel_values=None,
|
1401 |
+
image_sizes=None,
|
1402 |
+
attention_mask=None,
|
1403 |
+
**kwargs,
|
1404 |
+
):
|
1405 |
+
if past_key_values is not None:
|
1406 |
+
if isinstance(past_key_values, Cache):
|
1407 |
+
cache_length = past_key_values.get_seq_length()
|
1408 |
+
past_length = past_key_values.seen_tokens
|
1409 |
+
else:
|
1410 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1411 |
+
|
1412 |
+
# Keep only the unprocessed tokens:
|
1413 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1414 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1415 |
+
# input)
|
1416 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1417 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1418 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1419 |
+
# input_ids based on the past_length.
|
1420 |
+
elif past_length < input_ids.shape[1]:
|
1421 |
+
input_ids = input_ids[:, past_length:]
|
1422 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1423 |
+
elif self.config.image_token_index in input_ids:
|
1424 |
+
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
1425 |
+
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
1426 |
+
# older attention values, as their corresponding values are not part of the input.
|
1427 |
+
if cache_length < past_length and attention_mask is not None:
|
1428 |
+
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
|
1429 |
+
|
1430 |
+
position_ids = kwargs.get("position_ids", None)
|
1431 |
+
if attention_mask is not None and position_ids is None:
|
1432 |
+
# create position_ids on the fly for batch generation
|
1433 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1434 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1435 |
+
if past_key_values:
|
1436 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1437 |
+
|
1438 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1439 |
+
if inputs_embeds is not None and past_key_values is None:
|
1440 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1441 |
+
else:
|
1442 |
+
model_inputs = {"input_ids": input_ids}
|
1443 |
+
|
1444 |
+
model_inputs.update(
|
1445 |
+
{
|
1446 |
+
"position_ids": position_ids,
|
1447 |
+
"past_key_values": past_key_values,
|
1448 |
+
"use_cache": kwargs.get("use_cache"),
|
1449 |
+
"attention_mask": attention_mask,
|
1450 |
+
"pixel_values": pixel_values,
|
1451 |
+
"image_sizes": image_sizes,
|
1452 |
+
}
|
1453 |
+
)
|
1454 |
+
return model_inputs
|
1455 |
+
|
1456 |
+
def _reorder_cache(self, *args, **kwargs):
|
1457 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
1458 |
+
|
1459 |
+
AutoConfig.register("magma", MagmaConfig)
|
1460 |
+
AutoModelForCausalLM.register(MagmaConfig, MagmaForConditionalGeneration)
|