File size: 20,238 Bytes
8a6e50e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
import torch
from torch import nn
from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig
from transformers.models.clip.modeling_clip import CLIPAttention
from transformers.utils import logging
from typing import List
try:
from flash_attn import flash_attn_func
except ImportError:
pass
logger = logging.get_logger(__name__)
MAX_INPUT_ID = int(1e9)
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
attention_dropout=0.0,
dropout=0.0,
hidden_act="quick_gelu",
hidden_size=1024,
image_size=336,
initializer_factor=1.0,
initializer_range=0.02,
intermediate_size=4096,
layer_norm_eps=1e-05,
num_attention_heads=16,
num_channels=3,
num_hidden_layers=24,
patch_size=14,
projection_dim=768,
attn_implementation="eager",
)
class CLIPAttentionFA2(CLIPAttention):
"""Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)"""
def forward(self,
hidden_states,
attention_mask=None,
causal_attention_mask=None,
output_attentions=False,
):
"""Input shape: Batch x Time x Channel"""
assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask"
assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask"
assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions"
bsz, tgt_len, embed_dim = hidden_states.size()
query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout_p=self.dropout if self.training else 0.0,
softmax_scale=self.scale,
causal=False,
).reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None
def reshape_hd_patches_2x2merge(image_features, h_crop, w_crop):
"""
image_features: (num_images*num_crops, 24*24, 1024)
output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops
"""
N, L, C = image_features.shape
assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0
num_images = torch.tensor(N // (h_crop * w_crop), dtype=torch.int64)
H = torch.tensor(int(L**0.5), dtype=torch.int64)
H_div_2 = torch.tensor(H // 2, dtype=torch.int64)
image_features_hd = (
image_features.reshape(N, H, H, C) # N, 24, 24, 1024
.reshape(N, H_div_2, 2, H_div_2, 2, C) # N, 12, 2, 12, 2, 1024
.permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
.reshape(N, -1, 4 * C) # N, 144, 4096
.reshape(
num_images, h_crop, w_crop, H_div_2, H_div_2, -1
) # n_img, h_crop, w_crop, 12, 12, 4096
.permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096
.reshape(
num_images, h_crop * H_div_2, w_crop * H_div_2, 4 * C
) # n_img, h_crop*12, w_crop*12, 4096
)
return image_features_hd
def add_image_newline(image_features_hd, sub_GN):
"""
image_features_hd: (num_images, h_crop*12, w_crop*12, 4096)
output: (num_images, (h_crop*12) * (w_crop*12+1), 4096)
"""
num_images, h, w, hid_dim = image_features_hd.shape
# add the newline token to the HD image feature patches
newline_embeddings = sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim)
image_features_hd_newline = torch.cat(
[image_features_hd, newline_embeddings], dim=2
).reshape(num_images, -1, hid_dim)
return image_features_hd_newline
@torch.jit.script_if_tracing
def get_image_embeddings(image_dim_out, image_sizes, image_features, global_image_features_hd_newline):
"""
Get image embeddings for all images.
Need a for loop to process each image because of different image sizes
(patch arrangement is different for each image)
"""
glb_GN = torch.zeros(1, 1, image_dim_out * 4).to(image_features.device)
sub_GN = torch.zeros(1, 1, 1, image_dim_out * 4).to(image_features.device)
all_image_embeddings = torch.empty(0, 4096).to(image_features.device)
for i, img_size in enumerate(image_sizes):
# h, w = img_size
h, w = img_size[0], img_size[1]
h_crop = torch.tensor(h // 336, dtype=torch.int64)
w_crop = torch.tensor(w // 336, dtype=torch.int64)
num_crops = h_crop * w_crop
# NOTE: real num_crops is padded
# (num_crops, 24*24, 1024)
sub_image_features = image_features[i, 1 : 1 + num_crops]
sub_image_features_hd = reshape_hd_patches_2x2merge(sub_image_features, h_crop, w_crop)
sub_image_features_hd_newline = add_image_newline(sub_image_features_hd, sub_GN)
# # [sub features, separator, global features]
# all_image_embeddings.extend(
# [
# sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096)
# self.glb_GN.squeeze(0),
# global_image_features_hd_newline[i],
# ]
# )
# [sub features, separator, global features]
all_image_embeddings = torch.cat(
[
all_image_embeddings,
sub_image_features_hd_newline.view(-1, 4096), # (h_crop*12*(w_crop*12+1), 4096)
glb_GN.view(-1, 4096),
global_image_features_hd_newline[i],
]
)
return all_image_embeddings
@torch.jit.script_if_tracing
def clamp_input_ids(input_ids: torch.LongTensor, image_features: torch.FloatTensor, vocab_size: int):
if image_features.numel():
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
# positions for image tokens
condition = (input_ids < 0) & (input_ids > -int(1e9))
positions = torch.where(condition)
# has_image = len(positions[0].tolist()) > 0
input_ids = input_ids.clamp_min(0).clamp_max(vocab_size).detach()
return input_ids, positions
return input_ids, torch.where(torch.zeros((1, 1), dtype=torch.bool))
@torch.jit.script_if_tracing
def select_logic(hidden_states: torch.FloatTensor, image_features: torch.FloatTensor, positions: List[torch.LongTensor]):
if image_features.numel():
# apply 'select' logic
hidden_states = hidden_states.index_put(
positions, image_features, accumulate=False
)
return hidden_states
class Phi3Embedding(nn.Module):
"""Phi3 embedding for text-only and vision + text."""
def __init__(self, wte, vocab_size):
super().__init__()
self.wte = wte
self.vocab_size = vocab_size
def forward(self, input_ids: torch.LongTensor, image_features: torch.FloatTensor) -> torch.FloatTensor:
input_ids, positions = clamp_input_ids(input_ids, image_features, self.vocab_size)
hidden_states = self.wte(input_ids)
hidden_states = select_logic(hidden_states, image_features, positions)
return hidden_states
class Phi3ImageEmbedding(nn.Module):
"""Phi3 Image embedding."""
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
super().__init__()
# n_embed or hidden_size
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
self.drop = nn.Dropout(embd_drop)
else:
self.drop = None
self.wte = wte
if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
self.img_processor = CLIPVisionModel(clip_config)
image_dim_out = config.img_processor['image_dim_out']
self.num_img_tokens = config.img_processor['num_img_tokens']
# FA2 in CLIP
if config._attn_implementation == 'flash_attention_2':
for layer in self.img_processor.vision_model.encoder.layers:
clip_fa2 = CLIPAttentionFA2(clip_config)
del layer.self_attn
layer.self_attn = clip_fa2
else:
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
self.image_dim_out = image_dim_out
self.img_sizes = None
# global_gn and sub_gn for hd transform, serves as line separator
self.use_hd_transform = kwargs.get('use_hd_transform', False)
self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
# with_hd_transform and with_learnable_separator should have same value
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
if self.with_learnable_separator:
assert self.use_hd_transform, 'learnable separator is only for hd transform'
# 1024 * 4, merge spatial to channel dimension
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
projection_cls = kwargs.get('projection_cls', 'linear')
if projection_cls == 'linear':
self.img_projection = nn.Linear(image_dim_out, hidden_size)
elif projection_cls == 'mlp' and self.use_hd_transform:
dim_projection = hidden_size
depth = 2
layers = [nn.Linear(image_dim_out * 4, dim_projection)]
for _ in range(1, depth):
layers.extend([nn.GELU(),
nn.Linear(dim_projection, dim_projection)])
self.img_projection = nn.Sequential(*layers)
elif projection_cls == 'mlp':
dim_projection = hidden_size
depth = 2
layers = [nn.Linear(image_dim_out, dim_projection)]
for _ in range(1, depth):
layers.extend([nn.GELU(),
nn.Linear(dim_projection, dim_projection)])
self.img_projection = nn.Sequential(*layers)
else:
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
self.vocab_size = config.vocab_size
self.img_features = None
if isinstance(config.img_processor, dict):
self.layer_idx = config.img_processor.get('layer_idx', -2)
self.type_feature = config.img_processor.get('type_feature', 'patch')
else:
self.layer_idx = -2
self.type_feature = 'patch'
def set_img_features(self, img_features: torch.FloatTensor) -> None:
self.img_features = img_features
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
self.img_sizes = img_sizes
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
LAYER_IDX = self.layer_idx
TYPE_FEATURE = self.type_feature
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
img_feature = img_processor_output.hidden_states[LAYER_IDX]
if TYPE_FEATURE == "patch":
patch_feature = img_feature[:, 1:]
return patch_feature
raise NotImplementedError
# def forward(
# self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None
# ) -> torch.FloatTensor:
# input_shape = input_ids.size()
# input_ids = input_ids.view(-1, input_shape[-1])
# # positions for image tokens
# positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True)
# has_image = len(positions[0].tolist()) > 0
# # input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach()
# input_ids.clamp_min_(0).clamp_max_(self.vocab_size)
# warnings.warn(
# "Phi-3-V modifies `input_ids` in-place and the tokens indicating images will be "
# "removed after model forward. If your workflow requires multiple forward passes on "
# "the same `input_ids`, please make a copy of `input_ids` before passing it to the "
# "model."
# )
# hidden_states = self.wte(input_ids)
# if has_image:
# assert self.use_hd_transform
# num_images, num_crops, c, h, w = pixel_values.shape
# assert c == 3 and h == w == 336
# img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape(
# num_images, num_crops, -1, self.image_dim_out
# )
# image_features_proj = self.hd_feature_transform(img_features, image_sizes)
# hidden_states = hidden_states.index_put(
# positions, image_features_proj, accumulate=False
# )
# if self.drop is not None:
# hidden_states = self.drop(hidden_states)
# return hidden_states
def forward(self, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor:
assert self.use_hd_transform
num_images, num_crops, c, h, w = pixel_values.shape
assert c == 3 and h == w == 336
img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape(
num_images, num_crops, -1, self.image_dim_out
)
image_features_proj = self.hd_feature_transform(img_features, image_sizes)
return image_features_proj
def hd_feature_transform(self, image_features, image_sizes):
"""
image_features: (num_images, num_crops+1, 24*24, 1024)
"""
assert (
self.hd_transform_order == 'sub_glb'
), f'hd_transform_order `{self.hd_transform_order}` not implemented'
if isinstance(self.img_projection, nn.Sequential):
target_device = self.img_projection[0].bias.device
target_dtype = self.img_projection[0].bias.dtype
else: # It's a single nn.Linear layer
target_device = self.img_projection.bias.device
target_dtype = self.img_projection.bias.dtype
global_image_features = image_features[:, 0] # (num_images, 24*24, 1024)
# global feature can be viewed as a special HD case with num_crops 1x1
global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1)
global_image_features_hd_newline = self.add_image_newline(global_image_features_hd)
# all_image_embeddings = []
# # need a for loop to process each image because of different image sizes
# # (patch arrangement is different for each image)
# for i, img_size in enumerate(image_sizes):
# h, w = img_size
# h_crop = h // 336
# w_crop = w // 336
# num_crops = h_crop * w_crop
# # NOTE: real num_crops is padded
# # (num_crops, 24*24, 1024)
# sub_image_features = image_features[i, 1 : 1 + num_crops]
# sub_image_features_hd = self.reshape_hd_patches_2x2merge(
# sub_image_features, h_crop, w_crop
# )
# sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd)
# # [sub features, separator, global features]
# all_image_embeddings.extend(
# [
# sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096)
# self.glb_GN.squeeze(0),
# global_image_features_hd_newline[i],
# ]
# )
# image_features_proj = self.img_projection(
# torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype)
# )
# return image_features_proj
all_image_embeddings = get_image_embeddings(torch.tensor(self.image_dim_out), image_sizes, image_features, global_image_features_hd_newline)
image_features_proj = self.img_projection(
all_image_embeddings.unsqueeze(0).to(target_device).to(target_dtype)
)
return image_features_proj.squeeze()
def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop):
"""
image_features: (num_images*num_crops, 24*24, 1024)
output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops
"""
N, L, C = image_features.shape
assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0
num_images = N // (h_crop * w_crop)
H = int(L**0.5)
image_features_hd = (
image_features.reshape(N, H, H, C) # N, 24, 24, 1024
.reshape(N, H // 2, 2, H // 2, 2, C) # N, 12, 2, 12, 2, 1024
.permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
.reshape(N, -1, 4 * C) # N, 144, 4096
.reshape(
num_images, h_crop, w_crop, H // 2, H // 2, -1
) # n_img, h_crop, w_crop, 12, 12, 4096
.permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096
.reshape(
num_images, h_crop * H // 2, w_crop * H // 2, 4 * C
) # n_img, h_crop*12, w_crop*12, 4096
)
# alternative implementation using einops
# from einops import rearrange
# image_features_nhwc = rearrange(
# image_features,
# 'N (H W) c -> N H W c',
# H=H,
# W=H,
# )
# image_features_2x2merge = rearrange(
# image_features_nhwc,
# 'N (h h_pool) (w w_pool) c -> N h w (h_pool w_pool c)',
# h_pool=2,
# w_pool=2,
# )
# image_features_hd = rearrange(
# image_features_2x2merge,
# '(n_img h_crop w_crop) h w C -> n_img (h_crop h) (w_crop w) C',
# h_crop=h_crop,
# w_crop=w_crop,
# )
return image_features_hd
def add_image_newline(self, image_features_hd):
"""
image_features_hd: (num_images, h_crop*12, w_crop*12, 4096)
output: (num_images, (h_crop*12) * (w_crop*12+1), 4096)
"""
num_images, h, w, hid_dim = image_features_hd.shape
# add the newline token to the HD image feature patches
newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim)
image_features_hd_newline = torch.cat(
[image_features_hd, newline_embeddings], dim=2
).reshape(num_images, -1, hid_dim)
return image_features_hd_newline
|