Commit
·
073038f
1
Parent(s):
98aa2b7
Upload Phi-4-multimodal-instruct scripts to make ONNX models
Browse files- onnx/builder.py +628 -0
- onnx/config.json +3 -0
- onnx/modeling_phio.py +0 -0
- onnx/processing_phio.py +732 -0
- onnx/speech_conformer_encoder.py +0 -0
- onnx/vision_siglip_navit.py +1721 -0
onnx/builder.py
ADDED
@@ -0,0 +1,628 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import numpy as np
|
3 |
+
import onnx
|
4 |
+
import onnxruntime as ort
|
5 |
+
import onnxscript
|
6 |
+
import os
|
7 |
+
import requests
|
8 |
+
import shutil
|
9 |
+
import soundfile
|
10 |
+
import subprocess
|
11 |
+
import sys
|
12 |
+
import torch
|
13 |
+
|
14 |
+
from onnx import helper, numpy_helper, TensorProto
|
15 |
+
from onnxruntime_genai.models.builder import create_model
|
16 |
+
from onnxruntime.transformers.dynamo_onnx_helper import DynamoOnnxHelper
|
17 |
+
from onnxscript import ir
|
18 |
+
from PIL import Image
|
19 |
+
from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM
|
20 |
+
|
21 |
+
|
22 |
+
def build_vision(args):
|
23 |
+
# Many images:
|
24 |
+
prompt = f"{user_prompt}<|image_1|>\n<|image_2|>\n<|image_3|>\n<|image_4|>\nWhat is shown in these four images?{prompt_suffix}{assistant_prompt}"
|
25 |
+
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
26 |
+
image_1 = Image.open(requests.get(url, stream=True).raw)
|
27 |
+
url = "https://img.freepik.com/free-photo/painting-mountain-lake-with-mountain-background_188544-9126.jpg?w=2000"
|
28 |
+
image_2 = Image.open(requests.get(url, stream=True).raw)
|
29 |
+
url = "https://th.bing.com/th/id/OIP.gCvQ1vmPVJmrq1nnzM3ZHQHaEo?rs=1&pid=ImgDetMain"
|
30 |
+
image_3 = Image.open(requests.get(url, stream=True).raw)
|
31 |
+
url = "https://wallpaper.dog/large/10809054.jpg"
|
32 |
+
image_4 = Image.open(requests.get(url, stream=True).raw)
|
33 |
+
images = [image_1, image_2, image_3, image_4]
|
34 |
+
inputs = processor(prompt, images=images, return_tensors="pt").to(args.execution_provider.replace("dml", "cuda"))
|
35 |
+
inputs["input_image_embeds"] = inputs["input_image_embeds"].to(args.precision)
|
36 |
+
inputs["image_attention_mask"] = inputs["image_attention_mask"].to(args.precision)
|
37 |
+
|
38 |
+
# TorchScript export
|
39 |
+
dummy_inputs = (
|
40 |
+
inputs["input_image_embeds"], # image_embeds: torch.FloatTensor
|
41 |
+
inputs["image_attention_mask"], # image_attention_mask: torch.FloatTensor
|
42 |
+
inputs["image_sizes"], # image_sizes: torch.LongTensor
|
43 |
+
)
|
44 |
+
dynamic_axes = {
|
45 |
+
"pixel_values": {0: "num_images", 1: "max_num_crops", 3: "height", 4: "width"},
|
46 |
+
"image_attention_mask": {0: "num_images", 1: "max_num_crops"},
|
47 |
+
"image_sizes": {0: "num_images"},
|
48 |
+
"image_features": {0: "num_image_tokens"},
|
49 |
+
}
|
50 |
+
filename = "phi-4-mm-vision.onnx"
|
51 |
+
|
52 |
+
temp_folder_1 = os.path.join(args.output, "vision_init_export")
|
53 |
+
os.makedirs(temp_folder_1, exist_ok=True)
|
54 |
+
|
55 |
+
fpath_1 = os.path.join(temp_folder_1, filename)
|
56 |
+
torch.onnx.export(
|
57 |
+
model.model.embed_tokens_extend.image_embed,
|
58 |
+
args=dummy_inputs,
|
59 |
+
f=fpath_1,
|
60 |
+
export_params=True,
|
61 |
+
input_names=["pixel_values", "image_attention_mask", "image_sizes"],
|
62 |
+
output_names=["image_features"],
|
63 |
+
dynamic_axes=dynamic_axes,
|
64 |
+
opset_version=14,
|
65 |
+
do_constant_folding=True,
|
66 |
+
)
|
67 |
+
|
68 |
+
onnx.checker.check_model(fpath_1)
|
69 |
+
onnx.shape_inference.infer_shapes_path(fpath_1)
|
70 |
+
onnx_model = onnx.load_model(fpath_1, load_external_data=True)
|
71 |
+
|
72 |
+
temp_folder_2 = os.path.join(args.output, "vision_after_export")
|
73 |
+
os.makedirs(temp_folder_2, exist_ok=True)
|
74 |
+
|
75 |
+
fpath_2 = os.path.join(temp_folder_2, filename)
|
76 |
+
onnx.save_model(
|
77 |
+
onnx_model,
|
78 |
+
fpath_2,
|
79 |
+
save_as_external_data=True,
|
80 |
+
all_tensors_to_one_file=True,
|
81 |
+
location=f"{filename}.data",
|
82 |
+
size_threshold=0,
|
83 |
+
convert_attribute=False,
|
84 |
+
)
|
85 |
+
shutil.rmtree(temp_folder_1)
|
86 |
+
|
87 |
+
# ORT transformer optimizer
|
88 |
+
temp_folder_3 = os.path.join(args.output, "vision_after_opt")
|
89 |
+
fpath_3 = os.path.join(temp_folder_3, filename)
|
90 |
+
subprocess.run(
|
91 |
+
[
|
92 |
+
f"{sys.executable}", "-m", "onnxruntime.transformers.optimizer",
|
93 |
+
"--input", fpath_2,
|
94 |
+
"--output", fpath_3,
|
95 |
+
"--model_type", "clip",
|
96 |
+
"--num_heads", str(16),
|
97 |
+
"--hidden_size", str(1152),
|
98 |
+
"--use_external_data_format",
|
99 |
+
"--opt_level", str(0),
|
100 |
+
"--disable_shape_inference",
|
101 |
+
]
|
102 |
+
)
|
103 |
+
shutil.rmtree(temp_folder_2)
|
104 |
+
|
105 |
+
# ORT 4-bits quantizer
|
106 |
+
fpath_4 = os.path.join(args.output, filename)
|
107 |
+
cmd = [
|
108 |
+
f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
|
109 |
+
"--input_model", fpath_3,
|
110 |
+
"--output_model", fpath_4,
|
111 |
+
"--block_size", str(32),
|
112 |
+
]
|
113 |
+
if args.precision == torch.float32: cmd.extend(["--accuracy_level", str(4)])
|
114 |
+
subprocess.run(cmd)
|
115 |
+
shutil.rmtree(temp_folder_3)
|
116 |
+
|
117 |
+
|
118 |
+
def build_speech(args):
|
119 |
+
# Speech file:
|
120 |
+
prompt = f"{user_prompt}<|audio_1|>\n<|audio_2|>\nWhat are the stories that these audios come from?{prompt_suffix}{assistant_prompt}"
|
121 |
+
audio1 = soundfile.read(os.path.join(args.input, "examples", "1272-128104-0004.wav"))
|
122 |
+
audio2 = soundfile.read(os.path.join(args.input, "examples", "1272-128104-0009.wav"))
|
123 |
+
inputs = processor(prompt, audios=[audio1, audio2], return_tensors="pt").to(args.execution_provider.replace("dml", "cuda"))
|
124 |
+
inputs["input_audio_embeds"] = inputs["input_audio_embeds"].to(args.precision)
|
125 |
+
|
126 |
+
# TorchScript export
|
127 |
+
dummy_inputs = (
|
128 |
+
inputs["input_audio_embeds"], # audio_embeds: torch.FloatTensor
|
129 |
+
inputs["audio_attention_mask"], # audio_attention_mask: torch.BoolTensor
|
130 |
+
inputs["audio_embed_sizes"], # audio_sizes: torch.FloatTensor
|
131 |
+
inputs["input_mode"], # audio_projection_mode: int
|
132 |
+
)
|
133 |
+
dynamic_axes = {
|
134 |
+
"audio_embeds": {0: "num_audios", 1: "num_frames", 2: "feature_size"},
|
135 |
+
"audio_attention_mask": {0: "num_audios", 1: "num_frames"},
|
136 |
+
"audio_sizes": {0: "num_audios"},
|
137 |
+
"audio_features": {0: "num_audio_tokens"},
|
138 |
+
}
|
139 |
+
filename = "phi-4-mm-speech.onnx"
|
140 |
+
|
141 |
+
temp_folder_1 = os.path.join(args.output, "speech_init_export")
|
142 |
+
os.makedirs(temp_folder_1, exist_ok=True)
|
143 |
+
|
144 |
+
fpath_1 = os.path.join(temp_folder_1, filename)
|
145 |
+
torch._dynamo.config.capture_scalar_outputs = True
|
146 |
+
ep = torch.export.export(
|
147 |
+
model.model.embed_tokens_extend.audio_embed, args=dummy_inputs, strict=False,
|
148 |
+
dynamic_shapes=[
|
149 |
+
{0: torch.export.Dim.AUTO, 1: torch.export.Dim.AUTO, 2: torch.export.Dim.AUTO},
|
150 |
+
{0: torch.export.Dim.AUTO, 1: torch.export.Dim.AUTO},
|
151 |
+
{0: torch.export.Dim.AUTO},
|
152 |
+
{0: torch.export.Dim.AUTO},
|
153 |
+
]
|
154 |
+
)
|
155 |
+
onnx_program = torch.onnx.export(ep, (), input_names=["audio_embeds", "audio_attention_mask", "audio_sizes", "audio_projection_mode"], output_names=["audio_features"])
|
156 |
+
onnx_program.optimize()
|
157 |
+
onnx_program.save(fpath_1, external_data=True)
|
158 |
+
|
159 |
+
onnx.checker.check_model(fpath_1)
|
160 |
+
onnx.shape_inference.infer_shapes_path(fpath_1)
|
161 |
+
onnx_model = onnx.load_model(fpath_1, load_external_data=True)
|
162 |
+
|
163 |
+
temp_folder_2 = os.path.join(args.output, "speech_after_export")
|
164 |
+
os.makedirs(temp_folder_2, exist_ok=True)
|
165 |
+
|
166 |
+
fpath_2 = os.path.join(temp_folder_2, filename)
|
167 |
+
onnx.save_model(
|
168 |
+
onnx_model,
|
169 |
+
fpath_2,
|
170 |
+
save_as_external_data=True,
|
171 |
+
all_tensors_to_one_file=True,
|
172 |
+
location=f"{filename}.data",
|
173 |
+
size_threshold=0,
|
174 |
+
convert_attribute=False,
|
175 |
+
)
|
176 |
+
shutil.rmtree(temp_folder_1)
|
177 |
+
|
178 |
+
# ONNX/ORT rewriter
|
179 |
+
temp_folder_3 = os.path.join(args.output, "speech_after_rewrite")
|
180 |
+
os.makedirs(temp_folder_3, exist_ok=True)
|
181 |
+
|
182 |
+
onnx_model = ir.load(fpath_2)
|
183 |
+
DynamoOnnxHelper.fold_transpose_initializers(onnx_model)
|
184 |
+
onnxscript.rewriter.rewrite(onnx_model)
|
185 |
+
onnxscript.optimizer.optimize(onnx_model, onnx_shape_inference=False, input_size_limit=4*2048*2048, output_size_limit=4*2048*2048)
|
186 |
+
|
187 |
+
fpath_3 = os.path.join(temp_folder_3, filename)
|
188 |
+
ir.save(onnx_model, fpath_3, external_data=f"{filename}.data")
|
189 |
+
shutil.rmtree(temp_folder_2)
|
190 |
+
|
191 |
+
onnx_model = onnx.load_model(fpath_3, load_external_data=True)
|
192 |
+
# Fix labels of dynamic axes since they can't be specified during Dynamo export currently
|
193 |
+
onnx_model.graph.input[0].type.tensor_type.shape.dim[0].dim_param = "num_audios"
|
194 |
+
onnx_model.graph.input[0].type.tensor_type.shape.dim[1].dim_param = "num_frames"
|
195 |
+
onnx_model.graph.input[1].type.tensor_type.shape.dim[0].dim_param = "num_audios"
|
196 |
+
onnx_model.graph.input[1].type.tensor_type.shape.dim[1].dim_param = "num_frames"
|
197 |
+
onnx_model.graph.input[2].type.tensor_type.shape.dim[0].dim_param = "num_audios"
|
198 |
+
onnx_model.graph.output[0].type.tensor_type.shape.dim[0].dim_param = "num_audio_tokens"
|
199 |
+
|
200 |
+
onnx_model = DynamoOnnxHelper(onnx_model)
|
201 |
+
onnx_model.convert_constants_to_initializers()
|
202 |
+
onnx_model.clear_metadata()
|
203 |
+
|
204 |
+
os.remove(fpath_3)
|
205 |
+
os.remove(fpath_3 + ".data")
|
206 |
+
onnx_model.model.save_model_to_file(fpath_3, use_external_data_format=True, all_tensors_to_one_file=True, convert_attribute=True) # convert_attribute = True needed because of ONNX/ORT rewriter
|
207 |
+
|
208 |
+
# ORT transformer optimizer
|
209 |
+
temp_folder_4 = os.path.join(args.output, "speech_after_opt")
|
210 |
+
fpath_4 = os.path.join(temp_folder_4, filename)
|
211 |
+
subprocess.run(
|
212 |
+
[
|
213 |
+
f"{sys.executable}", "-m", "onnxruntime.transformers.optimizer",
|
214 |
+
"--input", fpath_3,
|
215 |
+
"--output", fpath_4,
|
216 |
+
"--model_type", "conformer",
|
217 |
+
"--num_heads", str(16),
|
218 |
+
"--hidden_size", str(1024),
|
219 |
+
"--use_external_data_format",
|
220 |
+
"--opt_level", str(0),
|
221 |
+
"--disable_shape_inference",
|
222 |
+
"--convert_attribute",
|
223 |
+
]
|
224 |
+
)
|
225 |
+
shutil.rmtree(temp_folder_3)
|
226 |
+
|
227 |
+
# ORT 4-bits quantizer
|
228 |
+
fpath_5 = os.path.join(args.output, filename)
|
229 |
+
cmd = [
|
230 |
+
f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
|
231 |
+
"--input_model", fpath_4,
|
232 |
+
"--output_model", fpath_5,
|
233 |
+
"--block_size", str(32),
|
234 |
+
]
|
235 |
+
if args.precision == torch.float32: cmd.extend(["--accuracy_level", str(4)])
|
236 |
+
subprocess.run(cmd)
|
237 |
+
shutil.rmtree(temp_folder_4)
|
238 |
+
|
239 |
+
|
240 |
+
def build_embedding(args):
|
241 |
+
# TorchScript export
|
242 |
+
batch_size, sequence_length, num_image_tokens, num_audio_tokens = 2, 8, 2, 2
|
243 |
+
inputs = {
|
244 |
+
"input_ids": torch.randint(low=0, high=config.vocab_size, size=(batch_size, sequence_length), device=args.execution_provider.replace("dml", "cuda"), dtype=torch.int64),
|
245 |
+
"image_features": torch.randn(num_image_tokens, config.hidden_size, device=args.execution_provider.replace("dml", "cuda"), dtype=args.precision),
|
246 |
+
"audio_features": torch.randn(num_audio_tokens, config.hidden_size, device=args.execution_provider.replace("dml", "cuda"), dtype=args.precision),
|
247 |
+
}
|
248 |
+
inputs["input_ids"][0][0] = -1
|
249 |
+
inputs["input_ids"][0][1] = -1
|
250 |
+
inputs["input_ids"][0][2] = -10000
|
251 |
+
inputs["input_ids"][0][3] = -10000
|
252 |
+
dummy_inputs = (
|
253 |
+
inputs["input_ids"], # input_ids: torch.LongTensor
|
254 |
+
inputs["image_features"], # image_features: Optional[torch.FloatTensor] = None,
|
255 |
+
inputs["audio_features"], # audio_features: Optional[torch.FloatTensor] = None,
|
256 |
+
)
|
257 |
+
dynamic_axes = {
|
258 |
+
"input_ids": {0: "batch_size", 1: "sequence_length"},
|
259 |
+
"image_features": {0: "num_image_tokens"},
|
260 |
+
"audio_features": {0: "num_audio_tokens"},
|
261 |
+
"inputs_embeds": {0: "batch_size", 1: "sequence_length"},
|
262 |
+
}
|
263 |
+
filename = "phi-4-mm-embedding.onnx"
|
264 |
+
|
265 |
+
temp_folder_1 = os.path.join(args.output, "embedding_init_export")
|
266 |
+
os.makedirs(temp_folder_1, exist_ok=True)
|
267 |
+
|
268 |
+
fpath_1 = os.path.join(temp_folder_1, filename)
|
269 |
+
torch.onnx.export(
|
270 |
+
model.model.combined_embed,
|
271 |
+
args=dummy_inputs,
|
272 |
+
f=fpath_1,
|
273 |
+
export_params=True,
|
274 |
+
input_names=["input_ids", "image_features", "audio_features"],
|
275 |
+
output_names=["inputs_embeds"],
|
276 |
+
dynamic_axes=dynamic_axes,
|
277 |
+
opset_version=14,
|
278 |
+
do_constant_folding=True,
|
279 |
+
)
|
280 |
+
|
281 |
+
onnx.checker.check_model(fpath_1)
|
282 |
+
onnx.shape_inference.infer_shapes_path(fpath_1)
|
283 |
+
onnx_model = onnx.load_model(fpath_1, load_external_data=True)
|
284 |
+
|
285 |
+
fpath_2 = os.path.join(args.output, filename)
|
286 |
+
onnx.save_model(
|
287 |
+
onnx_model,
|
288 |
+
fpath_2,
|
289 |
+
save_as_external_data=True,
|
290 |
+
all_tensors_to_one_file=True,
|
291 |
+
location=f"{filename}.data",
|
292 |
+
size_threshold=0,
|
293 |
+
convert_attribute=False,
|
294 |
+
)
|
295 |
+
shutil.rmtree(temp_folder_1)
|
296 |
+
|
297 |
+
|
298 |
+
def build_text(args):
|
299 |
+
# Create ONNX model
|
300 |
+
model_name = None
|
301 |
+
precision = "int4"
|
302 |
+
extra_options = {
|
303 |
+
"exclude_embeds": "true",
|
304 |
+
"filename": "phi-4-mm-text.onnx",
|
305 |
+
}
|
306 |
+
if args.precision == torch.float32: extra_options["int4_accuracy_level"] = 4
|
307 |
+
create_model(model_name, args.input, args.output, precision, args.execution_provider, args.cache_dir, **extra_options)
|
308 |
+
|
309 |
+
|
310 |
+
def build_adapters(args):
|
311 |
+
# setattr(args, 'use_ortvalue', True)
|
312 |
+
# build_float_adapters(args)
|
313 |
+
|
314 |
+
setattr(args, 'use_ortvalue', False)
|
315 |
+
build_quantized_adapters(args)
|
316 |
+
|
317 |
+
|
318 |
+
def extract_adapters_from_torch(args):
|
319 |
+
# Extract LoRAs from PyTorch model
|
320 |
+
hidden_size = config.hidden_size
|
321 |
+
num_kv_heads = config.num_key_value_heads
|
322 |
+
num_attn_heads = config.num_attention_heads
|
323 |
+
head_size = hidden_size // num_attn_heads
|
324 |
+
|
325 |
+
q_size = num_attn_heads * head_size
|
326 |
+
kv_size = num_kv_heads * head_size
|
327 |
+
intermediate_size = config.intermediate_size
|
328 |
+
|
329 |
+
vision_scaling = config.vision_lora["lora_alpha"] / config.vision_lora["r"]
|
330 |
+
speech_scaling = config.speech_lora["lora_alpha"] / config.speech_lora["r"]
|
331 |
+
|
332 |
+
vision_adapters = {}
|
333 |
+
speech_adapters = {}
|
334 |
+
for key, val in model.state_dict().items():
|
335 |
+
# Map name in graph as key
|
336 |
+
new_dict = {}
|
337 |
+
key = key.replace("self_attn", "attn").replace("lora_A", "lora_A.MatMul").replace("lora_B", "lora_B.MatMul")
|
338 |
+
|
339 |
+
if "lora_A" in key:
|
340 |
+
# LoRA_A is shared across projections
|
341 |
+
if "qkv_proj" in key:
|
342 |
+
new_dict[key.replace("qkv_proj", "q_proj")] = val
|
343 |
+
new_dict[key.replace("qkv_proj", "k_proj")] = val
|
344 |
+
new_dict[key.replace("qkv_proj", "v_proj")] = val
|
345 |
+
elif "gate_up_proj" in key:
|
346 |
+
new_dict[key.replace("gate_up_proj", "gate_proj")] = val
|
347 |
+
new_dict[key.replace("gate_up_proj", "up_proj")] = val
|
348 |
+
else:
|
349 |
+
new_dict[key] = val
|
350 |
+
|
351 |
+
elif "lora_B" in key:
|
352 |
+
# LoRA_B is split across projections
|
353 |
+
if "qkv_proj" in key:
|
354 |
+
new_dict[key.replace("qkv_proj", "q_proj")] = val[: q_size, :]
|
355 |
+
new_dict[key.replace("qkv_proj", "k_proj")] = val[q_size : q_size + kv_size, :]
|
356 |
+
new_dict[key.replace("qkv_proj", "v_proj")] = val[q_size + kv_size :, :]
|
357 |
+
elif "gate_up_proj" in key:
|
358 |
+
new_dict[key.replace("gate_up_proj", "gate_proj")] = val[: intermediate_size, :]
|
359 |
+
new_dict[key.replace("gate_up_proj", "up_proj")] = val[intermediate_size :, :]
|
360 |
+
else:
|
361 |
+
new_dict[key] = val
|
362 |
+
|
363 |
+
else:
|
364 |
+
continue
|
365 |
+
|
366 |
+
for new_key, new_val in new_dict.items():
|
367 |
+
new_key = new_key.replace(".vision", "").replace(".speech", "")
|
368 |
+
if "vision" in key:
|
369 |
+
np_data = new_val.detach().cpu().to(args.precision).numpy().transpose()
|
370 |
+
if "lora_B" in key:
|
371 |
+
np_data *= vision_scaling
|
372 |
+
vision_adapters[new_key] = ort.OrtValue.ortvalue_from_numpy(np_data) if args.use_ortvalue else np_data
|
373 |
+
elif "speech" in key:
|
374 |
+
np_data = new_val.detach().cpu().to(args.precision).numpy().transpose()
|
375 |
+
if "lora_B" in key:
|
376 |
+
np_data *= speech_scaling
|
377 |
+
speech_adapters[new_key] = ort.OrtValue.ortvalue_from_numpy(np_data) if args.use_ortvalue else np_data
|
378 |
+
else:
|
379 |
+
raise ValueError(f"Unknown LoRA key found: {key}")
|
380 |
+
|
381 |
+
return vision_adapters, speech_adapters
|
382 |
+
|
383 |
+
|
384 |
+
def build_onnx_adapters(vision_adapters, speech_adapters):
|
385 |
+
# Convert vision LoRAs
|
386 |
+
adapter_format = ort.AdapterFormat()
|
387 |
+
adapter_format.set_adapter_version(1)
|
388 |
+
adapter_format.set_model_version(1)
|
389 |
+
adapter_format.set_parameters(vision_adapters)
|
390 |
+
adapter_format.export_adapter(os.path.join(args.output, "phi-4-mm-vision.onnx_adapter"))
|
391 |
+
|
392 |
+
# Convert speech LoRAs
|
393 |
+
adapter_format = ort.AdapterFormat()
|
394 |
+
adapter_format.set_adapter_version(1)
|
395 |
+
adapter_format.set_model_version(1)
|
396 |
+
adapter_format.set_parameters(speech_adapters)
|
397 |
+
adapter_format.export_adapter(os.path.join(args.output, "phi-4-mm-speech.onnx_adapter"))
|
398 |
+
|
399 |
+
# Convert LoRA weights in ONNX model to inputs
|
400 |
+
filename = "phi-4-mm-text.onnx"
|
401 |
+
fpath = os.path.join(args.output, filename)
|
402 |
+
onnx_model = onnx.load_model(fpath)
|
403 |
+
|
404 |
+
to_proto = {
|
405 |
+
"tensor(int8)": TensorProto.INT8,
|
406 |
+
"tensor(uint8)": TensorProto.UINT8,
|
407 |
+
"tensor(float16)": TensorProto.FLOAT16,
|
408 |
+
"tensor(float)": TensorProto.FLOAT,
|
409 |
+
}
|
410 |
+
for key, val in vision_adapters.items():
|
411 |
+
# Handle different sized feature dimensions between adapters by using dynamic axes
|
412 |
+
shape = val.shape()
|
413 |
+
if "lora_A.MatMul.weight_Q4" in key:
|
414 |
+
shape[0] = "out_features"
|
415 |
+
elif "lora_B.MatMul.weight_Q4" in key:
|
416 |
+
shape[1] = "(in_features + block_size - 1) // block_size"
|
417 |
+
elif "lora_A.MatMul.weight_scales" in key or "lora_B.MatMul.weight_scales" in key:
|
418 |
+
shape[0] = "in_features * out_features / block_size"
|
419 |
+
elif "lora_A.MatMul.weight" in key:
|
420 |
+
shape[1] = "out_features"
|
421 |
+
elif "lora_B.MatMul.weight" in key:
|
422 |
+
shape[0] = "in_features"
|
423 |
+
|
424 |
+
new_input = helper.make_tensor_value_info(key, to_proto[val.data_type()], shape)
|
425 |
+
onnx_model.graph.input.extend([new_input])
|
426 |
+
for initializer in onnx_model.graph.initializer:
|
427 |
+
if initializer.name == key:
|
428 |
+
# Add 0-filled static initializer for when LoRA isn't used
|
429 |
+
# since size of inner dims in LoRA path don't matter
|
430 |
+
zero_initializer = helper.make_tensor(
|
431 |
+
name=initializer.name,
|
432 |
+
data_type=initializer.data_type,
|
433 |
+
dims=val.shape(),
|
434 |
+
vals=np.zeros(val.shape(), dtype=helper.tensor_dtype_to_np_dtype(initializer.data_type)).flatten(),
|
435 |
+
)
|
436 |
+
onnx_model.graph.initializer.remove(initializer)
|
437 |
+
onnx_model.graph.initializer.append(zero_initializer)
|
438 |
+
break
|
439 |
+
|
440 |
+
os.remove(fpath)
|
441 |
+
os.remove(fpath + ".data")
|
442 |
+
onnx.save_model(
|
443 |
+
onnx_model,
|
444 |
+
fpath,
|
445 |
+
save_as_external_data=True,
|
446 |
+
all_tensors_to_one_file=True,
|
447 |
+
location=f"{filename}.data",
|
448 |
+
size_threshold=0,
|
449 |
+
convert_attribute=False,
|
450 |
+
)
|
451 |
+
|
452 |
+
|
453 |
+
def build_float_adapters(args):
|
454 |
+
vision_adapters, speech_adapters = extract_adapters_from_torch(args)
|
455 |
+
build_onnx_adapters(vision_adapters, speech_adapters)
|
456 |
+
|
457 |
+
|
458 |
+
def build_adapter_only_onnx_model(args, adapters, filename, fpath):
|
459 |
+
inputs, outputs, initializers, value_infos, nodes = [], [], [], [], []
|
460 |
+
dtype = TensorProto.FLOAT16 if args.precision == torch.float16 else TensorProto.FLOAT
|
461 |
+
for key, val in adapters.items():
|
462 |
+
# Create input and output
|
463 |
+
inputs.append(helper.make_tensor_value_info(f"input.{key}", dtype, ["batch_size", "sequence_length", val.shape[0]]))
|
464 |
+
outputs.append(helper.make_tensor_value_info(f"output.{key}", dtype, ["batch_size", "sequence_length", val.shape[1]]))
|
465 |
+
|
466 |
+
# Create initializer data
|
467 |
+
tensor = numpy_helper.from_array(val)
|
468 |
+
tensor.name = key
|
469 |
+
initializers.append(tensor)
|
470 |
+
|
471 |
+
# Create MatMul node
|
472 |
+
matmul_node = helper.make_node(
|
473 |
+
"MatMul",
|
474 |
+
inputs=[inputs[-1].name, tensor.name],
|
475 |
+
outputs=[outputs[-1].name],
|
476 |
+
name=f"node.{key}",
|
477 |
+
)
|
478 |
+
nodes.append(matmul_node)
|
479 |
+
|
480 |
+
model = helper.make_model(
|
481 |
+
opset_imports=[helper.make_operatorsetid('', 14)],
|
482 |
+
ir_version=7,
|
483 |
+
producer_name="onnxruntime-genai",
|
484 |
+
producer_version="0.0.0",
|
485 |
+
graph=helper.make_graph(
|
486 |
+
name="main_graph",
|
487 |
+
inputs=inputs,
|
488 |
+
outputs=outputs,
|
489 |
+
initializer=initializers,
|
490 |
+
value_info=value_infos,
|
491 |
+
nodes=nodes,
|
492 |
+
)
|
493 |
+
)
|
494 |
+
onnx.save_model(
|
495 |
+
model,
|
496 |
+
fpath,
|
497 |
+
save_as_external_data=True,
|
498 |
+
all_tensors_to_one_file=True,
|
499 |
+
location=f"{filename}.data",
|
500 |
+
size_threshold=0,
|
501 |
+
convert_attribute=False,
|
502 |
+
)
|
503 |
+
|
504 |
+
|
505 |
+
def extract_adapters_from_onnx(args, fpath):
|
506 |
+
adapters = {}
|
507 |
+
model = onnx.load_model(fpath)
|
508 |
+
for initializer in model.graph.initializer:
|
509 |
+
val = numpy_helper.to_array(initializer)
|
510 |
+
adapters[initializer.name] = ort.OrtValue.ortvalue_from_numpy(val)
|
511 |
+
return adapters
|
512 |
+
|
513 |
+
|
514 |
+
def build_quantized_adapters(args):
|
515 |
+
# 1. Extract LoRAs from PyTorch model
|
516 |
+
vision_adapters, speech_adapters = extract_adapters_from_torch(args)
|
517 |
+
|
518 |
+
# 2. Put LoRAs into separate ONNX models
|
519 |
+
filename = "phi-4-mm-lora-vision.onnx"
|
520 |
+
fpath_1 = os.path.join(args.output, filename)
|
521 |
+
vision_model = build_adapter_only_onnx_model(args, vision_adapters, filename, fpath_1)
|
522 |
+
|
523 |
+
filename = "phi-4-mm-lora-speech.onnx"
|
524 |
+
fpath_2 = os.path.join(args.output, filename)
|
525 |
+
speech_model = build_adapter_only_onnx_model(args, speech_adapters, filename, fpath_2)
|
526 |
+
|
527 |
+
# 3. Quantize ONNX models to int4
|
528 |
+
filename = "phi-4-mm-qlora-vision.onnx"
|
529 |
+
fpath_3 = os.path.join(args.output, filename)
|
530 |
+
cmd = [
|
531 |
+
f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
|
532 |
+
"--input_model", fpath_1,
|
533 |
+
"--output_model", fpath_3,
|
534 |
+
"--block_size", str(32),
|
535 |
+
]
|
536 |
+
if args.precision == torch.float32: cmd.extend(["--accuracy_level", str(4)])
|
537 |
+
subprocess.run(cmd)
|
538 |
+
|
539 |
+
filename = "phi-4-mm-qlora-speech.onnx"
|
540 |
+
fpath_4 = os.path.join(args.output, filename)
|
541 |
+
cmd = [
|
542 |
+
f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
|
543 |
+
"--input_model", fpath_2,
|
544 |
+
"--output_model", fpath_4,
|
545 |
+
"--block_size", str(32),
|
546 |
+
]
|
547 |
+
if args.precision == torch.float32: cmd.extend(["--accuracy_level", str(4)])
|
548 |
+
subprocess.run(cmd)
|
549 |
+
|
550 |
+
os.remove(fpath_1)
|
551 |
+
os.remove(fpath_1 + ".data")
|
552 |
+
os.remove(fpath_2)
|
553 |
+
os.remove(fpath_2 + ".data")
|
554 |
+
|
555 |
+
# 4. Extract quantized LoRAs from ONNX models
|
556 |
+
vision_adapters = extract_adapters_from_onnx(args, fpath_3)
|
557 |
+
speech_adapters = extract_adapters_from_onnx(args, fpath_4)
|
558 |
+
|
559 |
+
# 5. Store quantized LoRAs in adapter files
|
560 |
+
build_onnx_adapters(vision_adapters, speech_adapters)
|
561 |
+
|
562 |
+
os.remove(fpath_3)
|
563 |
+
os.remove(fpath_3 + ".data")
|
564 |
+
os.remove(fpath_4)
|
565 |
+
os.remove(fpath_4 + ".data")
|
566 |
+
|
567 |
+
|
568 |
+
def get_args():
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
|
571 |
+
parser.add_argument(
|
572 |
+
"-i",
|
573 |
+
"--input",
|
574 |
+
required=True,
|
575 |
+
help="Path to folder on disk containing the Hugging Face config, model, tokenizer, etc.",
|
576 |
+
)
|
577 |
+
|
578 |
+
parser.add_argument(
|
579 |
+
"-o",
|
580 |
+
"--output",
|
581 |
+
required=True,
|
582 |
+
help="Path to folder to store ONNX model and additional files (e.g. GenAI config, external data files, etc.)",
|
583 |
+
)
|
584 |
+
|
585 |
+
parser.add_argument(
|
586 |
+
"-p",
|
587 |
+
"--precision",
|
588 |
+
required=True,
|
589 |
+
choices=["fp16", "fp32"],
|
590 |
+
help="Precision to export PyTorch components with",
|
591 |
+
)
|
592 |
+
|
593 |
+
parser.add_argument(
|
594 |
+
"-e",
|
595 |
+
"--execution_provider",
|
596 |
+
required=True,
|
597 |
+
choices=["cpu", "cuda", "dml"],
|
598 |
+
help="Execution provider for Phi-3.5 vision components",
|
599 |
+
)
|
600 |
+
|
601 |
+
parser.add_argument(
|
602 |
+
"-c",
|
603 |
+
"--cache_dir",
|
604 |
+
required=False,
|
605 |
+
default=os.path.join('.', 'cache_dir'),
|
606 |
+
help="Cache directory for Hugging Face files and temporary ONNX external data files",
|
607 |
+
)
|
608 |
+
|
609 |
+
args = parser.parse_args()
|
610 |
+
args.precision = torch.float16 if args.precision == "fp16" else torch.float32
|
611 |
+
return args
|
612 |
+
|
613 |
+
if __name__ == "__main__":
|
614 |
+
user_prompt = '<|user|>\n'
|
615 |
+
assistant_prompt = '<|assistant|>\n'
|
616 |
+
prompt_suffix = "<|end|>\n"
|
617 |
+
|
618 |
+
args = get_args()
|
619 |
+
config = AutoConfig.from_pretrained(args.input, trust_remote_code=True)
|
620 |
+
processor = AutoProcessor.from_pretrained(args.input, trust_remote_code=True)
|
621 |
+
model = AutoModelForCausalLM.from_pretrained(args.input, trust_remote_code=True, torch_dtype=args.precision).to(args.execution_provider.replace("dml", "cuda"))
|
622 |
+
|
623 |
+
# Build model components
|
624 |
+
build_vision(args)
|
625 |
+
build_speech(args)
|
626 |
+
build_embedding(args)
|
627 |
+
build_text(args)
|
628 |
+
build_adapters(args)
|
onnx/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16fb355ba07bea3ffdf794f297f2005aee4f4ee6aba9742e264ad4471535e966
|
3 |
+
size 4585
|
onnx/modeling_phio.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
onnx/processing_phio.py
ADDED
@@ -0,0 +1,732 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
Processor class for PhiO
|
17 |
+
"""
|
18 |
+
import re
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
import math
|
21 |
+
from enum import Enum
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import scipy
|
25 |
+
import torch
|
26 |
+
import torchvision
|
27 |
+
|
28 |
+
from transformers import AutoFeatureExtractor, AutoImageProcessor
|
29 |
+
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
30 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
31 |
+
from transformers.image_utils import (
|
32 |
+
ImageInput,
|
33 |
+
make_list_of_images,
|
34 |
+
valid_images,
|
35 |
+
)
|
36 |
+
from transformers.processing_utils import ProcessorMixin
|
37 |
+
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
|
38 |
+
from transformers.utils import TensorType, logging
|
39 |
+
from torch.nn.utils.rnn import pad_sequence
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
# Special tokens
|
45 |
+
_COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN = r'<\|image_\d+\|>' # For backward compatibility
|
46 |
+
_COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN = r'<\|audio_\d+\|>' # For backward compatibility
|
47 |
+
_IMAGE_SPECIAL_TOKEN = '<|endoftext10|>'
|
48 |
+
_AUDIO_SPECIAL_TOKEN = '<|endoftext11|>'
|
49 |
+
_IMAGE_SPECIAL_TOKEN_ID = 200010 # '<|endoftext10|>', or we can better name it (in `tokenizer_config.json`)
|
50 |
+
_AUDIO_SPECIAL_TOKEN_ID = 200011 # '<|endoftext11|>'
|
51 |
+
|
52 |
+
|
53 |
+
class InputMode(Enum):
|
54 |
+
LANGUAGE = 0
|
55 |
+
VISION = 1
|
56 |
+
SPEECH = 2
|
57 |
+
VISION_SPEECH = 3
|
58 |
+
|
59 |
+
|
60 |
+
class PhiOImageProcessor(BaseImageProcessor):
|
61 |
+
r"""
|
62 |
+
Constructs a PhiO image processor.
|
63 |
+
"""
|
64 |
+
model_input_names = ["input_image_embeds", "image_sizes", "image_attention_mask"]
|
65 |
+
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
dynamic_hd,
|
69 |
+
**kwargs,
|
70 |
+
) -> None:
|
71 |
+
super().__init__(**kwargs)
|
72 |
+
self.dynamic_hd = dynamic_hd
|
73 |
+
|
74 |
+
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
|
75 |
+
best_ratio_diff = float('inf')
|
76 |
+
best_ratio = (1, 1)
|
77 |
+
area = width * height
|
78 |
+
for ratio in target_ratios:
|
79 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
80 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
81 |
+
if ratio_diff < best_ratio_diff:
|
82 |
+
best_ratio_diff = ratio_diff
|
83 |
+
best_ratio = ratio
|
84 |
+
elif ratio_diff == best_ratio_diff:
|
85 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
86 |
+
best_ratio = ratio
|
87 |
+
return best_ratio
|
88 |
+
|
89 |
+
def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=384, mask_size=27, use_thumbnail=True):
|
90 |
+
orig_width, orig_height = image.size
|
91 |
+
|
92 |
+
w_crop_num = math.ceil(orig_width/float(image_size))
|
93 |
+
h_crop_num = math.ceil(orig_height/float(image_size))
|
94 |
+
if w_crop_num * h_crop_num > max_num:
|
95 |
+
|
96 |
+
aspect_ratio = orig_width / orig_height
|
97 |
+
|
98 |
+
# calculate the existing image aspect ratio
|
99 |
+
target_ratios = set(
|
100 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
101 |
+
i * j <= max_num and i * j >= min_num)
|
102 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
103 |
+
|
104 |
+
# find the closest aspect ratio to the target
|
105 |
+
target_aspect_ratio = self.find_closest_aspect_ratio(
|
106 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
107 |
+
|
108 |
+
# calculate the target width and height
|
109 |
+
target_width = image_size * target_aspect_ratio[0]
|
110 |
+
target_height = image_size * target_aspect_ratio[1]
|
111 |
+
print(target_aspect_ratio)
|
112 |
+
else:
|
113 |
+
target_width = image_size * w_crop_num
|
114 |
+
target_height = image_size * h_crop_num
|
115 |
+
target_aspect_ratio = (w_crop_num, h_crop_num)
|
116 |
+
|
117 |
+
# Calculate the ratio
|
118 |
+
ratio_width = target_width / orig_width
|
119 |
+
ratio_height = target_height / orig_height
|
120 |
+
if ratio_width < ratio_height:
|
121 |
+
new_size = (target_width, int(orig_height * ratio_width))
|
122 |
+
padding_width = 0
|
123 |
+
padding_height = target_height - int(orig_height * ratio_width)
|
124 |
+
else:
|
125 |
+
new_size = (int(orig_width * ratio_height), target_height)
|
126 |
+
padding_width = target_width - int(orig_width * ratio_height)
|
127 |
+
padding_height = 0
|
128 |
+
|
129 |
+
attention_mask = torch.ones((int(mask_size*target_aspect_ratio[1]), int(mask_size*target_aspect_ratio[0])))
|
130 |
+
if padding_width >= 14:
|
131 |
+
attention_mask[:, -math.floor(padding_width/14):] = 0
|
132 |
+
if padding_height >= 14:
|
133 |
+
attention_mask[-math.floor(padding_height/14):,:] = 0
|
134 |
+
assert attention_mask.sum() > 0
|
135 |
+
|
136 |
+
if min(new_size[1], target_height) < 10 or min(new_size[0], target_width) < 10:
|
137 |
+
raise ValueError(f'the aspect ratio is very extreme {new_size}')
|
138 |
+
|
139 |
+
image = torchvision.transforms.functional.resize(image, [new_size[1], new_size[0]],)
|
140 |
+
|
141 |
+
resized_img = torchvision.transforms.functional.pad(image, [0, 0, padding_width, padding_height], fill=[255,255,255])
|
142 |
+
|
143 |
+
return resized_img, attention_mask
|
144 |
+
|
145 |
+
def pad_to_max_num_crops(self, images, max_crops=5):
|
146 |
+
"""
|
147 |
+
images: B x 3 x H x W, B<=max_crops
|
148 |
+
"""
|
149 |
+
B, _, H, W = images.shape
|
150 |
+
if B < max_crops:
|
151 |
+
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
|
152 |
+
images = torch.cat([images, pad], dim=0)
|
153 |
+
return images
|
154 |
+
|
155 |
+
def pad_mask_to_max_num_crops(self, masks, max_crops=5):
|
156 |
+
B, H, W = masks.shape
|
157 |
+
if B < max_crops:
|
158 |
+
pad = torch.ones(max_crops - B, H, W, dtype=masks.dtype, device=masks.device)
|
159 |
+
masks = torch.cat([masks, pad], dim=0)
|
160 |
+
return masks
|
161 |
+
|
162 |
+
def preprocess(
|
163 |
+
self,
|
164 |
+
images: ImageInput,
|
165 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
166 |
+
):
|
167 |
+
"""
|
168 |
+
Args:
|
169 |
+
images (`ImageInput`):
|
170 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
171 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
172 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
173 |
+
The type of tensors to return. Can be one of:
|
174 |
+
- Unset: Return a list of `np.ndarray`.
|
175 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
176 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
177 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
178 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
179 |
+
"""
|
180 |
+
images = make_list_of_images(images)
|
181 |
+
|
182 |
+
if not valid_images(images):
|
183 |
+
raise ValueError(
|
184 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
185 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
186 |
+
)
|
187 |
+
|
188 |
+
# Basic settings.
|
189 |
+
img_processor = torchvision.transforms.Compose([
|
190 |
+
torchvision.transforms.ToTensor(),
|
191 |
+
torchvision.transforms.Normalize(
|
192 |
+
(0.5, 0.5, 0.5),
|
193 |
+
(0.5, 0.5, 0.5)
|
194 |
+
),
|
195 |
+
])
|
196 |
+
dyhd_base_resolution = 448
|
197 |
+
|
198 |
+
# Dynamic HD
|
199 |
+
base_resolution = dyhd_base_resolution
|
200 |
+
images = [image.convert('RGB') for image in images]
|
201 |
+
# cover 384 and 448 resolution
|
202 |
+
mask_resolution = base_resolution // 14
|
203 |
+
elems, image_attention_masks = [], []
|
204 |
+
for im in images:
|
205 |
+
elem, attention_mask = self.dynamic_preprocess(im, max_num=self.dynamic_hd, image_size=base_resolution, mask_size=mask_resolution)
|
206 |
+
elems.append(elem)
|
207 |
+
image_attention_masks.append(attention_mask)
|
208 |
+
hd_images = [img_processor(im) for im in elems]
|
209 |
+
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(base_resolution, base_resolution), mode='bicubic',).to(im.dtype) for im in hd_images]
|
210 |
+
shapes = [[im.size(1), im.size(2)] for im in hd_images]
|
211 |
+
mask_shapes = [[mask.size(0), mask.size(1)] for mask in image_attention_masks]
|
212 |
+
global_attention_mask = [torch.ones((1, mask_resolution, mask_resolution)) for _ in hd_images]
|
213 |
+
hd_images_reshape = [im.reshape(1, 3,
|
214 |
+
h//base_resolution,
|
215 |
+
base_resolution,
|
216 |
+
w//base_resolution,
|
217 |
+
base_resolution
|
218 |
+
).permute(0,2,4,1,3,5).reshape(-1, 3, base_resolution, base_resolution).contiguous() for im, (h, w) in zip(hd_images, shapes)]
|
219 |
+
attention_masks_reshape = [mask.reshape(1,
|
220 |
+
h//mask_resolution,
|
221 |
+
mask_resolution,
|
222 |
+
w//mask_resolution,
|
223 |
+
mask_resolution
|
224 |
+
).permute(0,1,3,2,4).reshape(-1, mask_resolution, mask_resolution).contiguous() for mask, (h, w) in zip(image_attention_masks, mask_shapes)]
|
225 |
+
downsample_attention_masks = [mask[:,0::2,0::2].reshape(1,
|
226 |
+
h//mask_resolution,
|
227 |
+
w//mask_resolution,
|
228 |
+
mask_resolution//2+mask_resolution%2,
|
229 |
+
mask_resolution//2+mask_resolution%2
|
230 |
+
).permute(0,1,3,2,4) for mask, (h,w) in zip(attention_masks_reshape, mask_shapes)]
|
231 |
+
downsample_attention_masks = [mask.reshape(mask.size(1)*mask.size(2), mask.size(3)*mask.size(4))for mask in downsample_attention_masks]
|
232 |
+
num_img_tokens = [256 + 1 + int(mask.sum().item()) + int(mask[:,0].sum().item()) + 16 for mask in downsample_attention_masks]
|
233 |
+
|
234 |
+
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
|
235 |
+
hd_masks_reshape = [torch.cat([_global_mask] + [_mask], dim=0) for _global_mask, _mask in zip(global_attention_mask, attention_masks_reshape)]
|
236 |
+
max_crops = max([img.size(0) for img in hd_images_reshape])
|
237 |
+
image_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in hd_images_reshape]
|
238 |
+
image_transformed = torch.stack(image_transformed, dim=0)
|
239 |
+
mask_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in hd_masks_reshape]
|
240 |
+
mask_transformed = torch.stack(mask_transformed, dim=0)
|
241 |
+
|
242 |
+
returned_input_image_embeds = image_transformed
|
243 |
+
returned_image_sizes = torch.tensor(shapes, dtype=torch.long)
|
244 |
+
returned_image_attention_mask = mask_transformed
|
245 |
+
returned_num_img_tokens = num_img_tokens
|
246 |
+
|
247 |
+
data = {
|
248 |
+
"input_image_embeds": returned_input_image_embeds,
|
249 |
+
"image_sizes": returned_image_sizes,
|
250 |
+
"image_attention_mask": returned_image_attention_mask,
|
251 |
+
"num_img_tokens": returned_num_img_tokens,
|
252 |
+
}
|
253 |
+
|
254 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
255 |
+
|
256 |
+
|
257 |
+
AudioInput = Tuple[Union[np.ndarray, torch.Tensor], int]
|
258 |
+
AudioInputs = List[AudioInput]
|
259 |
+
|
260 |
+
|
261 |
+
def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
|
262 |
+
"""Create a Mel filter-bank the same as SpeechLib FbankFC.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
sample_rate (int): Sample rate in Hz. number > 0 [scalar]
|
266 |
+
n_fft (int): FFT size. int > 0 [scalar]
|
267 |
+
n_mel (int): Mel filter size. int > 0 [scalar]
|
268 |
+
fmin (float): lowest frequency (in Hz). If None use 0.0.
|
269 |
+
float >= 0 [scalar]
|
270 |
+
fmax: highest frequency (in Hz). If None use sample_rate / 2.
|
271 |
+
float >= 0 [scalar]
|
272 |
+
|
273 |
+
Returns
|
274 |
+
out (numpy.ndarray): Mel transform matrix
|
275 |
+
[shape=(n_mels, 1 + n_fft/2)]
|
276 |
+
"""
|
277 |
+
|
278 |
+
bank_width = int(n_fft // 2 + 1)
|
279 |
+
if fmax is None:
|
280 |
+
fmax = sample_rate / 2
|
281 |
+
if fmin is None:
|
282 |
+
fmin = 0
|
283 |
+
assert fmin >= 0, "fmin cannot be negtive"
|
284 |
+
assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"
|
285 |
+
|
286 |
+
def mel(f):
|
287 |
+
return 1127.0 * np.log(1.0 + f / 700.0)
|
288 |
+
|
289 |
+
def bin2mel(fft_bin):
|
290 |
+
return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))
|
291 |
+
|
292 |
+
def f2bin(f):
|
293 |
+
return int((f * n_fft / sample_rate) + 0.5)
|
294 |
+
|
295 |
+
# Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
|
296 |
+
klo = f2bin(fmin) + 1
|
297 |
+
khi = f2bin(fmax)
|
298 |
+
|
299 |
+
khi = max(khi, klo)
|
300 |
+
|
301 |
+
# Spec 2: SpeechLib uses trianges in Mel space
|
302 |
+
mlo = mel(fmin)
|
303 |
+
mhi = mel(fmax)
|
304 |
+
m_centers = np.linspace(mlo, mhi, n_mels + 2)
|
305 |
+
ms = (mhi - mlo) / (n_mels + 1)
|
306 |
+
|
307 |
+
matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
|
308 |
+
for m in range(0, n_mels):
|
309 |
+
left = m_centers[m]
|
310 |
+
center = m_centers[m + 1]
|
311 |
+
right = m_centers[m + 2]
|
312 |
+
for fft_bin in range(klo, khi):
|
313 |
+
mbin = bin2mel(fft_bin)
|
314 |
+
if left < mbin < right:
|
315 |
+
matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms
|
316 |
+
|
317 |
+
return matrix
|
318 |
+
|
319 |
+
|
320 |
+
class PhiOAudioFeatureExtractor(SequenceFeatureExtractor):
|
321 |
+
model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"]
|
322 |
+
|
323 |
+
def __init__(self, audio_compression_rate, audio_downsample_rate, audio_feat_stride, **kwargs):
|
324 |
+
feature_size = 80
|
325 |
+
sampling_rate = 16000
|
326 |
+
padding_value = 0.0
|
327 |
+
super().__init__(feature_size, sampling_rate, padding_value, **kwargs)
|
328 |
+
|
329 |
+
self.compression_rate = audio_compression_rate
|
330 |
+
self.qformer_compression_rate = audio_downsample_rate
|
331 |
+
self.feat_stride = audio_feat_stride
|
332 |
+
|
333 |
+
self._eightk_method = "fillzero"
|
334 |
+
self._mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=7690).T
|
335 |
+
|
336 |
+
self._hamming400 = np.hamming(400) # for 16k audio
|
337 |
+
self._hamming200 = np.hamming(200) # for 8k audio
|
338 |
+
|
339 |
+
def duration_to_frames(self, duration):
|
340 |
+
"""duration in s, estimated frames"""
|
341 |
+
frame_rate = 10
|
342 |
+
|
343 |
+
num_frames = duration * 1000 // frame_rate
|
344 |
+
return num_frames
|
345 |
+
|
346 |
+
def __call__(
|
347 |
+
self,
|
348 |
+
audios: List[AudioInput],
|
349 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
350 |
+
):
|
351 |
+
# Ref: https://github.com/huggingface/transformers/blob/v4.47.0/src/transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py#L161
|
352 |
+
returned_input_audio_embeds = []
|
353 |
+
returned_audio_embed_sizes = []
|
354 |
+
audio_frames_list = []
|
355 |
+
# import pdb; pdb.set_trace()
|
356 |
+
|
357 |
+
for audio_data, sample_rate in audios:
|
358 |
+
audio_embeds = self._extract_features(audio_data, sample_rate)
|
359 |
+
audio_frames = len(audio_embeds) * self.feat_stride
|
360 |
+
audio_embed_size = self._compute_audio_embed_size(audio_frames)
|
361 |
+
|
362 |
+
returned_input_audio_embeds.append(torch.tensor(audio_embeds))
|
363 |
+
returned_audio_embed_sizes.append(torch.tensor(audio_embed_size).long())
|
364 |
+
audio_frames_list.append(audio_frames)
|
365 |
+
|
366 |
+
returned_input_audio_embeds = pad_sequence(
|
367 |
+
returned_input_audio_embeds, batch_first=True
|
368 |
+
)
|
369 |
+
returned_audio_embed_sizes = torch.stack(returned_audio_embed_sizes, dim=0)
|
370 |
+
audio_frames = torch.tensor(audio_frames_list)
|
371 |
+
returned_audio_attention_mask = torch.arange(0, audio_frames.max()).unsqueeze(0) < audio_frames.unsqueeze(1) if len(audios) > 1 else None
|
372 |
+
|
373 |
+
data = {
|
374 |
+
"input_audio_embeds": returned_input_audio_embeds,
|
375 |
+
"audio_embed_sizes": returned_audio_embed_sizes,
|
376 |
+
}
|
377 |
+
if returned_audio_attention_mask is not None:
|
378 |
+
data["audio_attention_mask"] = returned_audio_attention_mask
|
379 |
+
|
380 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
381 |
+
|
382 |
+
def _extract_spectrogram(self, wav, fs):
|
383 |
+
"""Extract spectrogram features from waveform.
|
384 |
+
Args:
|
385 |
+
wav (1D array): waveform of the input
|
386 |
+
fs (int): sampling rate of the waveform, 16000 or 8000.
|
387 |
+
If fs=8000, the waveform will be resampled to 16000Hz.
|
388 |
+
Output:
|
389 |
+
log_fbank (2D array): a TxD matrix of log Mel filterbank features.
|
390 |
+
D=80, and T is the number of frames.
|
391 |
+
"""
|
392 |
+
if wav.ndim > 1:
|
393 |
+
wav = np.squeeze(wav)
|
394 |
+
|
395 |
+
# by default, we extract the mean if stereo
|
396 |
+
if len(wav.shape) == 2:
|
397 |
+
wav = wav.mean(1)
|
398 |
+
|
399 |
+
# Resample to 16000 or 8000 if needed
|
400 |
+
if fs > 16000:
|
401 |
+
wav = scipy.signal.resample_poly(wav, 1, fs // 16000)
|
402 |
+
fs = 16000
|
403 |
+
elif 8000 < fs < 16000:
|
404 |
+
wav = scipy.signal.resample_poly(wav, 1, fs // 8000)
|
405 |
+
fs = 8000
|
406 |
+
elif fs < 8000:
|
407 |
+
raise RuntimeError(f"Unsupported sample rate {fs}")
|
408 |
+
|
409 |
+
if fs == 8000:
|
410 |
+
if self._eightk_method == "resample":
|
411 |
+
# Input audio is 8 kHz. Convert to 16 kHz before feature
|
412 |
+
# extraction
|
413 |
+
wav = scipy.signal.resample_poly(wav, 2, 1)
|
414 |
+
fs = 16000
|
415 |
+
# Do nothing here for fillzero method
|
416 |
+
elif fs != 16000:
|
417 |
+
# Input audio is not a supported sample rate.
|
418 |
+
raise RuntimeError(f"Input data using an unsupported sample rate: {fs}")
|
419 |
+
|
420 |
+
preemphasis = 0.97
|
421 |
+
|
422 |
+
if fs == 8000:
|
423 |
+
n_fft = 256
|
424 |
+
win_length = 200
|
425 |
+
hop_length = 80
|
426 |
+
fft_window = self._hamming200
|
427 |
+
elif fs == 16000:
|
428 |
+
n_fft = 512
|
429 |
+
win_length = 400
|
430 |
+
hop_length = 160
|
431 |
+
fft_window = self._hamming400
|
432 |
+
|
433 |
+
# Spec 1: SpeechLib cut remaining sample insufficient for a hop
|
434 |
+
n_batch = (wav.shape[0] - win_length) // hop_length + 1
|
435 |
+
# Here we don't use stride_tricks since the input array may not satisfy
|
436 |
+
# memory layout requirement and we need writeable output
|
437 |
+
# Here we only use list of views before copy to desination
|
438 |
+
# so it is more efficient than broadcasting
|
439 |
+
y_frames = np.array(
|
440 |
+
[wav[_stride : _stride + win_length] for _stride in range(0, hop_length * n_batch, hop_length)],
|
441 |
+
dtype=np.float32,
|
442 |
+
)
|
443 |
+
|
444 |
+
# Spec 2: SpeechLib applies preemphasis within each batch
|
445 |
+
y_frames_prev = np.roll(y_frames, 1, axis=1)
|
446 |
+
y_frames_prev[:, 0] = y_frames_prev[:, 1]
|
447 |
+
y_frames = (y_frames - preemphasis * y_frames_prev) * 32768
|
448 |
+
|
449 |
+
S = np.fft.rfft(fft_window * y_frames, n=n_fft, axis=1).astype(np.complex64)
|
450 |
+
|
451 |
+
if fs == 8000:
|
452 |
+
# Need to pad the output to look like 16 kHz data but with zeros in
|
453 |
+
# the 4 to 8 kHz bins.
|
454 |
+
frames, bins = S.shape
|
455 |
+
padarray = np.zeros((frames, bins))
|
456 |
+
S = np.concatenate((S[:, 0:-1], padarray), axis=1) # Nyquist bin gets set to zero
|
457 |
+
|
458 |
+
spec = np.abs(S).astype(np.float32)
|
459 |
+
return spec
|
460 |
+
|
461 |
+
def _extract_features(self, wav, fs):
|
462 |
+
"""Extract log filterbank features from waveform.
|
463 |
+
Args:
|
464 |
+
wav (1D array): waveform of the input
|
465 |
+
fs (int): sampling rate of the waveform, 16000 or 8000.
|
466 |
+
If fs=8000, the waveform will be resampled to 16000Hz.
|
467 |
+
Output:
|
468 |
+
log_fbank (2D array): a TxD matrix of log Mel filterbank features.
|
469 |
+
D=80, and T is the number of frames.
|
470 |
+
"""
|
471 |
+
spec = self._extract_spectrogram(wav, fs)
|
472 |
+
spec_power = spec**2
|
473 |
+
|
474 |
+
fbank_power = np.clip(spec_power.dot(self._mel), 1.0, None)
|
475 |
+
log_fbank = np.log(fbank_power).astype(np.float32)
|
476 |
+
|
477 |
+
return log_fbank
|
478 |
+
|
479 |
+
def _compute_audio_embed_size(self, audio_frames):
|
480 |
+
integer = audio_frames // self.compression_rate
|
481 |
+
remainder = audio_frames % self.compression_rate
|
482 |
+
|
483 |
+
result = integer if remainder == 0 else integer + 1
|
484 |
+
|
485 |
+
integer = result // self.qformer_compression_rate
|
486 |
+
remainder = result % self.qformer_compression_rate
|
487 |
+
result = integer if remainder == 0 else integer + 1 # qformer compression
|
488 |
+
|
489 |
+
return result
|
490 |
+
|
491 |
+
|
492 |
+
class PhiOProcessor(ProcessorMixin):
|
493 |
+
r"""
|
494 |
+
Constructs a PhiO processor which raps an image processor, a audio processor, and a GPT tokenizer into a single processor.
|
495 |
+
|
496 |
+
[`PhiOProcessor`] offers all the functionalities of [`PhiOImageProcessor`] and [`GPT2Tokenizer`]. See the
|
497 |
+
[`~PhiOProcessor.__call__`] and [`~PhiOProcessor.decode`] for more information.
|
498 |
+
|
499 |
+
Args:
|
500 |
+
image_processor ([`PhiOImageProcessor`], *optional*):
|
501 |
+
The image processor is a required input.
|
502 |
+
tokenizer ([`GPT2Tokenizer`], *optional*):
|
503 |
+
The tokenizer is a required input.
|
504 |
+
"""
|
505 |
+
|
506 |
+
attributes = ["image_processor", "audio_processor", "tokenizer"]
|
507 |
+
tokenizer_class = "GPT2TokenizerFast"
|
508 |
+
image_processor_class = "AutoImageProcessor" # PhiOImageProcessor will be registered later
|
509 |
+
audio_processor_class = "AutoFeatureExtractor" # PhiOAudioFeatureExtractor will be registered later
|
510 |
+
|
511 |
+
def __init__(self, image_processor, audio_processor, tokenizer):
|
512 |
+
self.image_processor = image_processor
|
513 |
+
self.audio_processor = audio_processor
|
514 |
+
self.tokenizer = tokenizer
|
515 |
+
|
516 |
+
def __call__(
|
517 |
+
self,
|
518 |
+
text: Union[TextInput, List[TextInput]],
|
519 |
+
images: Optional[ImageInput] = None,
|
520 |
+
audios: Optional[AudioInputs] = None,
|
521 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
522 |
+
truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
|
523 |
+
max_length=None,
|
524 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
525 |
+
) -> BatchFeature:
|
526 |
+
"""
|
527 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forards the `text`
|
528 |
+
and `kwargs` arguments to GPT2Tokenizer's [`~GPT2Tokenizer.__call__`] if `text` is not `None` to encode
|
529 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
530 |
+
PhiOImageProcessor's [`~PhiOImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
531 |
+
of the above two methods for more information.
|
532 |
+
|
533 |
+
Args:
|
534 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
535 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
536 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
537 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
538 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
539 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
540 |
+
tensor. Both channels-first and channels-last formats are supported.
|
541 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
542 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
543 |
+
index) among:
|
544 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
545 |
+
sequence if provided).
|
546 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
547 |
+
acceptable input length for the model if that argument is not provided.
|
548 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
549 |
+
lengths).
|
550 |
+
max_length (`int`, *optional*):
|
551 |
+
Maximum length of the returned list and optionally padding length (see above).
|
552 |
+
truncation (`bool`, *optional*):
|
553 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
554 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
555 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
556 |
+
|
557 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
558 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
559 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
560 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
561 |
+
|
562 |
+
Returns:
|
563 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
564 |
+
|
565 |
+
- **input_ids** -- List of token ids to be fed to a model.
|
566 |
+
- **input_image_embeds** -- Pixel values to be fed to a model.
|
567 |
+
- **image_sizes** -- List of tuples specifying the size of each image in `input_image_embeds`.
|
568 |
+
- **image_attention_mask** -- List of attention masks for each image in `input_image_embeds`.
|
569 |
+
- **input_audio_embeds** -- Audio embeddings to be fed to a model.
|
570 |
+
- **audio_embed_sizes** -- List of integers specifying the size of each audio in `input_audio_embeds`.
|
571 |
+
- **audio_attention_mask** -- List of attention masks for each audio in `input_audio_embeds`.
|
572 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
|
573 |
+
"""
|
574 |
+
image_inputs = self.image_processor(images, return_tensors=return_tensors) if images is not None else {}
|
575 |
+
audio_inputs = self.audio_processor(audios, return_tensors=return_tensors) if audios is not None else {}
|
576 |
+
inputs = self._convert_images_audios_text_to_inputs(
|
577 |
+
image_inputs,
|
578 |
+
audio_inputs,
|
579 |
+
text,
|
580 |
+
padding=padding,
|
581 |
+
truncation=truncation,
|
582 |
+
max_length=max_length,
|
583 |
+
return_tensors=return_tensors,
|
584 |
+
)
|
585 |
+
|
586 |
+
# idenfity the input mode
|
587 |
+
if len(image_inputs) > 0 and len(audio_inputs) > 0:
|
588 |
+
input_mode = InputMode.VISION_SPEECH
|
589 |
+
elif len(image_inputs) > 0:
|
590 |
+
input_mode = InputMode.VISION
|
591 |
+
elif len(audio_inputs) > 0:
|
592 |
+
input_mode = InputMode.SPEECH
|
593 |
+
else:
|
594 |
+
input_mode = InputMode.LANGUAGE
|
595 |
+
inputs["input_mode"] = torch.tensor([input_mode.value], dtype=torch.long)
|
596 |
+
|
597 |
+
return inputs
|
598 |
+
|
599 |
+
@property
|
600 |
+
def special_image_token_id(self):
|
601 |
+
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
602 |
+
|
603 |
+
def get_special_image_token_id(self):
|
604 |
+
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
605 |
+
|
606 |
+
def _convert_images_audios_text_to_inputs(
|
607 |
+
self, images, audios, text, padding=False, truncation=None, max_length=None, return_tensors=None
|
608 |
+
):
|
609 |
+
# prepare image id to image input ids
|
610 |
+
if len(images) > 0:
|
611 |
+
input_image_embeds = images["input_image_embeds"]
|
612 |
+
image_sizes = images["image_sizes"]
|
613 |
+
image_attention_mask = images["image_attention_mask"]
|
614 |
+
num_img_tokens = images['num_img_tokens']
|
615 |
+
else:
|
616 |
+
input_image_embeds = torch.tensor([])
|
617 |
+
image_sizes = torch.tensor([])
|
618 |
+
image_attention_mask = torch.tensor([])
|
619 |
+
num_img_tokens = []
|
620 |
+
|
621 |
+
# prepare audio id to audio input ids
|
622 |
+
if len(audios) > 0:
|
623 |
+
input_audio_embeds = audios["input_audio_embeds"]
|
624 |
+
audio_embed_sizes = audios["audio_embed_sizes"]
|
625 |
+
audio_attention_mask = audios.get("audio_attention_mask", torch.tensor([]))
|
626 |
+
else:
|
627 |
+
input_audio_embeds = torch.tensor([])
|
628 |
+
audio_embed_sizes = torch.tensor([])
|
629 |
+
audio_attention_mask = torch.tensor([])
|
630 |
+
|
631 |
+
# Replace certain special tokens for compatibility
|
632 |
+
# Ref: https://stackoverflow.com/questions/11475885/python-replace-regex
|
633 |
+
if isinstance(text, str):
|
634 |
+
text = [text]
|
635 |
+
assert isinstance(text, list)
|
636 |
+
processed_text = [re.sub(_COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN, _IMAGE_SPECIAL_TOKEN, t) for t in text]
|
637 |
+
processed_text = [re.sub(_COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN, _AUDIO_SPECIAL_TOKEN, t) for t in processed_text]
|
638 |
+
|
639 |
+
input_ids_list = [self.tokenizer(t).input_ids for t in processed_text]
|
640 |
+
|
641 |
+
img_cnt, audio_cnt = 0, 0 # only needed for later assertion
|
642 |
+
image_token_count_iter = iter(num_img_tokens)
|
643 |
+
audio_embed_size_iter = iter(audio_embed_sizes.tolist())
|
644 |
+
new_input_ids_list = []
|
645 |
+
for input_ids in input_ids_list:
|
646 |
+
i = 0
|
647 |
+
while i < len(input_ids):
|
648 |
+
token_id = input_ids[i]
|
649 |
+
if token_id == _AUDIO_SPECIAL_TOKEN_ID:
|
650 |
+
token_count = next(audio_embed_size_iter)
|
651 |
+
audio_cnt += 1
|
652 |
+
elif token_id == _IMAGE_SPECIAL_TOKEN_ID:
|
653 |
+
token_count = next(image_token_count_iter)
|
654 |
+
img_cnt += 1
|
655 |
+
else:
|
656 |
+
i += 1
|
657 |
+
continue
|
658 |
+
tokens = [token_id] * token_count
|
659 |
+
input_ids = input_ids[:i] + tokens + input_ids[i + 1:]
|
660 |
+
i += token_count
|
661 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
662 |
+
new_input_ids_list.append(input_ids)
|
663 |
+
lengths = torch.tensor([len(input_ids) for input_ids in new_input_ids_list])
|
664 |
+
max_len = lengths.max()
|
665 |
+
input_ids = input_ids.new_full((len(new_input_ids_list), max_len), self.tokenizer.pad_token_id)
|
666 |
+
# batched inference requires left padding
|
667 |
+
for i in range(len(new_input_ids_list)):
|
668 |
+
input_ids[i, max_len - len(new_input_ids_list[i]):] = new_input_ids_list[i]
|
669 |
+
|
670 |
+
# If the below assertion fails, it might be that input pure-text
|
671 |
+
# messages contain image/audio special tokens literally
|
672 |
+
# (<|endoftext10|>, <|endoftext11|>).
|
673 |
+
assert (
|
674 |
+
img_cnt == len(num_img_tokens)
|
675 |
+
), (
|
676 |
+
f"Number of image tokens in prompt_token_ids ({img_cnt}) "
|
677 |
+
f"does not match number of images ({len(num_img_tokens)})"
|
678 |
+
)
|
679 |
+
assert (
|
680 |
+
audio_cnt == len(audio_embed_sizes)
|
681 |
+
), (
|
682 |
+
f"Number of audio tokens in prompt_token_ids ({audio_cnt}) "
|
683 |
+
f"does not match number of audios ({len(audio_embed_sizes)})"
|
684 |
+
)
|
685 |
+
|
686 |
+
# prepare attention mask
|
687 |
+
seq_range = torch.arange(max_len - 1, -1, -1)
|
688 |
+
attention_mask = seq_range.unsqueeze(0) < lengths.unsqueeze(1)
|
689 |
+
|
690 |
+
# prepare batch feature
|
691 |
+
data = {
|
692 |
+
"input_ids": input_ids,
|
693 |
+
"input_image_embeds": input_image_embeds,
|
694 |
+
"image_sizes": image_sizes,
|
695 |
+
"image_attention_mask": image_attention_mask,
|
696 |
+
"input_audio_embeds": input_audio_embeds,
|
697 |
+
"audio_embed_sizes": audio_embed_sizes,
|
698 |
+
"audio_attention_mask": audio_attention_mask,
|
699 |
+
"attention_mask": attention_mask,
|
700 |
+
}
|
701 |
+
|
702 |
+
return BatchFeature(
|
703 |
+
data=data
|
704 |
+
)
|
705 |
+
|
706 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
707 |
+
def batch_decode(self, *args, **kwargs):
|
708 |
+
"""
|
709 |
+
This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
710 |
+
refer to the docstring of this method for more information.
|
711 |
+
"""
|
712 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
713 |
+
|
714 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
715 |
+
def decode(self, *args, **kwargs):
|
716 |
+
"""
|
717 |
+
This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
718 |
+
the docstring of this method for more information.
|
719 |
+
"""
|
720 |
+
return self.tokenizer.decode(*args, **kwargs)
|
721 |
+
|
722 |
+
@property
|
723 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
724 |
+
def model_input_names(self):
|
725 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
726 |
+
image_processor_input_names = self.image_processor.model_input_names
|
727 |
+
audio_processor_input_names = self.audio_processor.model_input_names
|
728 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + audio_processor_input_names))
|
729 |
+
|
730 |
+
|
731 |
+
AutoImageProcessor.register("PhiOImageProcessor", PhiOImageProcessor)
|
732 |
+
AutoFeatureExtractor.register("PhiOAudioFeatureExtractor", PhiOAudioFeatureExtractor)
|
onnx/speech_conformer_encoder.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
onnx/vision_siglip_navit.py
ADDED
@@ -0,0 +1,1721 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Siglip model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Union
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
27 |
+
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class SiglipTextConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
|
34 |
+
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
35 |
+
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
|
36 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
41 |
+
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
42 |
+
the `inputs_ids` passed when calling [`SiglipModel`].
|
43 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
44 |
+
Dimensionality of the encoder layers and the pooler layer.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
46 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
max_position_embeddings (`int`, *optional*, defaults to 64):
|
52 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
53 |
+
just in case (e.g., 512 or 1024 or 2048).
|
54 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
55 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
56 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
57 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
58 |
+
The epsilon used by the layer normalization layers.
|
59 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
62 |
+
The id of the padding token in the vocabulary.
|
63 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
64 |
+
The id of the beginning-of-sequence token in the vocabulary.
|
65 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
66 |
+
The id of the end-of-sequence token in the vocabulary.
|
67 |
+
Example:
|
68 |
+
```python
|
69 |
+
>>> from transformers import SiglipTextConfig, SiglipTextModel
|
70 |
+
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
|
71 |
+
>>> configuration = SiglipTextConfig()
|
72 |
+
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
73 |
+
>>> model = SiglipTextModel(configuration)
|
74 |
+
>>> # Accessing the model configuration
|
75 |
+
>>> configuration = model.config
|
76 |
+
```"""
|
77 |
+
|
78 |
+
model_type = "siglip_text_model"
|
79 |
+
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
vocab_size=32000,
|
83 |
+
hidden_size=768,
|
84 |
+
intermediate_size=3072,
|
85 |
+
num_hidden_layers=12,
|
86 |
+
num_attention_heads=12,
|
87 |
+
max_position_embeddings=64,
|
88 |
+
hidden_act="gelu_pytorch_tanh",
|
89 |
+
layer_norm_eps=1e-6,
|
90 |
+
attention_dropout=0.0,
|
91 |
+
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
92 |
+
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
93 |
+
pad_token_id=1,
|
94 |
+
bos_token_id=49406,
|
95 |
+
eos_token_id=49407,
|
96 |
+
_flash_attn_2_enabled=True,
|
97 |
+
**kwargs,
|
98 |
+
):
|
99 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
100 |
+
|
101 |
+
self.vocab_size = vocab_size
|
102 |
+
self.hidden_size = hidden_size
|
103 |
+
self.intermediate_size = intermediate_size
|
104 |
+
self.num_hidden_layers = num_hidden_layers
|
105 |
+
self.num_attention_heads = num_attention_heads
|
106 |
+
self.max_position_embeddings = max_position_embeddings
|
107 |
+
self.layer_norm_eps = layer_norm_eps
|
108 |
+
self.hidden_act = hidden_act
|
109 |
+
self.attention_dropout = attention_dropout
|
110 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
111 |
+
|
112 |
+
@classmethod
|
113 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
114 |
+
cls._set_token_in_kwargs(kwargs)
|
115 |
+
|
116 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
117 |
+
|
118 |
+
# get the text config dict if we are loading from SiglipConfig
|
119 |
+
if config_dict.get("model_type") == "siglip":
|
120 |
+
config_dict = config_dict["text_config"]
|
121 |
+
|
122 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
123 |
+
logger.warning(
|
124 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
125 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
126 |
+
)
|
127 |
+
|
128 |
+
return cls.from_dict(config_dict, **kwargs)
|
129 |
+
|
130 |
+
|
131 |
+
class SiglipVisionConfig(PretrainedConfig):
|
132 |
+
r"""
|
133 |
+
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
134 |
+
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
135 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
136 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
137 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
138 |
+
documentation from [`PretrainedConfig`] for more information.
|
139 |
+
Args:
|
140 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
141 |
+
Dimensionality of the encoder layers and the pooler layer.
|
142 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
143 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
144 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
145 |
+
Number of hidden layers in the Transformer encoder.
|
146 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
147 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
148 |
+
num_channels (`int`, *optional*, defaults to 3):
|
149 |
+
Number of channels in the input images.
|
150 |
+
image_size (`int`, *optional*, defaults to 224):
|
151 |
+
The size (resolution) of each image.
|
152 |
+
patch_size (`int`, *optional*, defaults to 16):
|
153 |
+
The size (resolution) of each patch.
|
154 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
155 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
156 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
157 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
158 |
+
The epsilon used by the layer normalization layers.
|
159 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
160 |
+
The dropout ratio for the attention probabilities.
|
161 |
+
Example:
|
162 |
+
```python
|
163 |
+
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
164 |
+
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
165 |
+
>>> configuration = SiglipVisionConfig()
|
166 |
+
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
167 |
+
>>> model = SiglipVisionModel(configuration)
|
168 |
+
>>> # Accessing the model configuration
|
169 |
+
>>> configuration = model.config
|
170 |
+
```"""
|
171 |
+
|
172 |
+
model_type = "siglip_vision_model"
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
hidden_size=768,
|
177 |
+
intermediate_size=3072,
|
178 |
+
num_hidden_layers=12,
|
179 |
+
num_attention_heads=12,
|
180 |
+
num_channels=3,
|
181 |
+
image_size=224,
|
182 |
+
patch_size=16,
|
183 |
+
hidden_act="gelu_pytorch_tanh",
|
184 |
+
layer_norm_eps=1e-6,
|
185 |
+
attention_dropout=0.0,
|
186 |
+
_flash_attn_2_enabled=True,
|
187 |
+
**kwargs,
|
188 |
+
):
|
189 |
+
super().__init__(**kwargs)
|
190 |
+
|
191 |
+
self.hidden_size = hidden_size
|
192 |
+
self.intermediate_size = intermediate_size
|
193 |
+
self.num_hidden_layers = num_hidden_layers
|
194 |
+
self.num_attention_heads = num_attention_heads
|
195 |
+
self.num_channels = num_channels
|
196 |
+
self.patch_size = patch_size
|
197 |
+
self.image_size = image_size
|
198 |
+
self.attention_dropout = attention_dropout
|
199 |
+
self.layer_norm_eps = layer_norm_eps
|
200 |
+
self.hidden_act = hidden_act
|
201 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
202 |
+
|
203 |
+
@classmethod
|
204 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
205 |
+
cls._set_token_in_kwargs(kwargs)
|
206 |
+
|
207 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
208 |
+
|
209 |
+
# get the vision config dict if we are loading from SiglipConfig
|
210 |
+
if config_dict.get("model_type") == "siglip":
|
211 |
+
config_dict = config_dict["vision_config"]
|
212 |
+
|
213 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
214 |
+
logger.warning(
|
215 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
216 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
217 |
+
)
|
218 |
+
|
219 |
+
return cls.from_dict(config_dict, **kwargs)
|
220 |
+
|
221 |
+
|
222 |
+
class SiglipConfig(PretrainedConfig):
|
223 |
+
r"""
|
224 |
+
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
|
225 |
+
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
|
226 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
|
227 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
228 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
229 |
+
documentation from [`PretrainedConfig`] for more information.
|
230 |
+
Args:
|
231 |
+
text_config (`dict`, *optional*):
|
232 |
+
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
233 |
+
vision_config (`dict`, *optional*):
|
234 |
+
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
235 |
+
kwargs (*optional*):
|
236 |
+
Dictionary of keyword arguments.
|
237 |
+
Example:
|
238 |
+
```python
|
239 |
+
>>> from transformers import SiglipConfig, SiglipModel
|
240 |
+
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
|
241 |
+
>>> configuration = SiglipConfig()
|
242 |
+
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
243 |
+
>>> model = SiglipModel(configuration)
|
244 |
+
>>> # Accessing the model configuration
|
245 |
+
>>> configuration = model.config
|
246 |
+
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
|
247 |
+
>>> from transformers import SiglipTextConfig, SiglipVisionConfig
|
248 |
+
>>> # Initializing a SiglipText and SiglipVision configuration
|
249 |
+
>>> config_text = SiglipTextConfig()
|
250 |
+
>>> config_vision = SiglipVisionConfig()
|
251 |
+
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
|
252 |
+
```"""
|
253 |
+
|
254 |
+
model_type = "siglip"
|
255 |
+
|
256 |
+
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
257 |
+
super().__init__(**kwargs)
|
258 |
+
|
259 |
+
if text_config is None:
|
260 |
+
text_config = {}
|
261 |
+
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
262 |
+
|
263 |
+
if vision_config is None:
|
264 |
+
vision_config = {}
|
265 |
+
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")
|
266 |
+
|
267 |
+
self.text_config = SiglipTextConfig(**text_config)
|
268 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
269 |
+
|
270 |
+
self.initializer_factor = 1.0
|
271 |
+
|
272 |
+
@classmethod
|
273 |
+
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
|
274 |
+
r"""
|
275 |
+
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
|
276 |
+
model configuration.
|
277 |
+
Returns:
|
278 |
+
[`SiglipConfig`]: An instance of a configuration object
|
279 |
+
"""
|
280 |
+
|
281 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
282 |
+
|
283 |
+
# coding=utf-8
|
284 |
+
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
285 |
+
#
|
286 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
287 |
+
# you may not use this file except in compliance with the License.
|
288 |
+
# You may obtain a copy of the License at
|
289 |
+
#
|
290 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
291 |
+
#
|
292 |
+
# Unless required by applicable law or agreed to in writing, software
|
293 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
294 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
295 |
+
# See the License for the specific language governing permissions and
|
296 |
+
# limitations under the License.
|
297 |
+
""" PyTorch Siglip model."""
|
298 |
+
|
299 |
+
|
300 |
+
import math
|
301 |
+
import warnings
|
302 |
+
from dataclasses import dataclass
|
303 |
+
from typing import Any, Optional, Tuple, Union
|
304 |
+
|
305 |
+
import numpy as np
|
306 |
+
import torch
|
307 |
+
import torch.nn.functional as F
|
308 |
+
import torch.utils.checkpoint
|
309 |
+
from torch import nn
|
310 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
311 |
+
|
312 |
+
from transformers.activations import ACT2FN
|
313 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
314 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
315 |
+
from transformers.modeling_utils import PreTrainedModel
|
316 |
+
from transformers.utils import (
|
317 |
+
ModelOutput,
|
318 |
+
add_start_docstrings,
|
319 |
+
add_start_docstrings_to_model_forward,
|
320 |
+
is_flash_attn_2_available,
|
321 |
+
logging,
|
322 |
+
replace_return_docstrings,
|
323 |
+
)
|
324 |
+
|
325 |
+
logger = logging.get_logger(__name__)
|
326 |
+
|
327 |
+
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
328 |
+
|
329 |
+
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
330 |
+
"google/siglip-base-patch16-224",
|
331 |
+
# See all SigLIP models at https://huggingface.co/models?filter=siglip
|
332 |
+
]
|
333 |
+
|
334 |
+
if is_flash_attn_2_available():
|
335 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
336 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
337 |
+
|
338 |
+
|
339 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
340 |
+
def _get_unpad_data(attention_mask):
|
341 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
342 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
343 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
344 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
345 |
+
return (
|
346 |
+
indices,
|
347 |
+
cu_seqlens,
|
348 |
+
max_seqlen_in_batch,
|
349 |
+
)
|
350 |
+
|
351 |
+
|
352 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
353 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
354 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
355 |
+
def norm_cdf(x):
|
356 |
+
# Computes standard normal cumulative distribution function
|
357 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
358 |
+
|
359 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
360 |
+
warnings.warn(
|
361 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
362 |
+
"The distribution of values may be incorrect.",
|
363 |
+
stacklevel=2,
|
364 |
+
)
|
365 |
+
|
366 |
+
# Values are generated by using a truncated uniform distribution and
|
367 |
+
# then using the inverse CDF for the normal distribution.
|
368 |
+
# Get upper and lower cdf values
|
369 |
+
l = norm_cdf((a - mean) / std)
|
370 |
+
u = norm_cdf((b - mean) / std)
|
371 |
+
|
372 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
373 |
+
# [2l-1, 2u-1].
|
374 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
375 |
+
|
376 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
377 |
+
# standard normal
|
378 |
+
if tensor.dtype in [torch.float16, torch.bfloat16]:
|
379 |
+
# The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
|
380 |
+
og_dtype = tensor.dtype
|
381 |
+
tensor = tensor.to(torch.float32)
|
382 |
+
tensor.erfinv_()
|
383 |
+
tensor = tensor.to(og_dtype)
|
384 |
+
else:
|
385 |
+
tensor.erfinv_()
|
386 |
+
|
387 |
+
# Transform to proper mean, std
|
388 |
+
tensor.mul_(std * math.sqrt(2.0))
|
389 |
+
tensor.add_(mean)
|
390 |
+
|
391 |
+
# Clamp to ensure it's in the proper range
|
392 |
+
if tensor.dtype == torch.float16:
|
393 |
+
# The `clamp_` op is not (yet?) defined in float16+cpu
|
394 |
+
tensor = tensor.to(torch.float32)
|
395 |
+
tensor.clamp_(min=a, max=b)
|
396 |
+
tensor = tensor.to(torch.float16)
|
397 |
+
else:
|
398 |
+
tensor.clamp_(min=a, max=b)
|
399 |
+
|
400 |
+
|
401 |
+
def trunc_normal_tf_(
|
402 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
403 |
+
) -> torch.Tensor:
|
404 |
+
"""Fills the input Tensor with values drawn from a truncated
|
405 |
+
normal distribution. The values are effectively drawn from the
|
406 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
407 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
408 |
+
the bounds. The method used for generating the random values works
|
409 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
410 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
411 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
412 |
+
and the result is subsquently scaled and shifted by the mean and std args.
|
413 |
+
Args:
|
414 |
+
tensor: an n-dimensional `torch.Tensor`
|
415 |
+
mean: the mean of the normal distribution
|
416 |
+
std: the standard deviation of the normal distribution
|
417 |
+
a: the minimum cutoff value
|
418 |
+
b: the maximum cutoff value
|
419 |
+
"""
|
420 |
+
with torch.no_grad():
|
421 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
422 |
+
tensor.mul_(std).add_(mean)
|
423 |
+
|
424 |
+
|
425 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
426 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
427 |
+
if mode == "fan_in":
|
428 |
+
denom = fan_in
|
429 |
+
elif mode == "fan_out":
|
430 |
+
denom = fan_out
|
431 |
+
elif mode == "fan_avg":
|
432 |
+
denom = (fan_in + fan_out) / 2
|
433 |
+
|
434 |
+
variance = scale / denom
|
435 |
+
|
436 |
+
if distribution == "truncated_normal":
|
437 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
438 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
439 |
+
elif distribution == "normal":
|
440 |
+
with torch.no_grad():
|
441 |
+
tensor.normal_(std=math.sqrt(variance))
|
442 |
+
elif distribution == "uniform":
|
443 |
+
bound = math.sqrt(3 * variance)
|
444 |
+
with torch.no_grad():
|
445 |
+
tensor.uniform_(-bound, bound)
|
446 |
+
else:
|
447 |
+
raise ValueError(f"invalid distribution {distribution}")
|
448 |
+
|
449 |
+
|
450 |
+
def lecun_normal_(tensor):
|
451 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
452 |
+
|
453 |
+
|
454 |
+
def default_flax_embed_init(tensor):
|
455 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
456 |
+
|
457 |
+
|
458 |
+
@dataclass
|
459 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
460 |
+
class SiglipVisionModelOutput(ModelOutput):
|
461 |
+
"""
|
462 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
463 |
+
Args:
|
464 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
465 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
466 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
467 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
468 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
469 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
470 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
471 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
472 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
473 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
474 |
+
sequence_length)`.
|
475 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
476 |
+
heads.
|
477 |
+
"""
|
478 |
+
|
479 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
480 |
+
last_hidden_state: torch.FloatTensor = None
|
481 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
482 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
483 |
+
|
484 |
+
|
485 |
+
@dataclass
|
486 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip
|
487 |
+
class SiglipTextModelOutput(ModelOutput):
|
488 |
+
"""
|
489 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
490 |
+
Args:
|
491 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
492 |
+
The text embeddings obtained by applying the projection layer to the pooler_output.
|
493 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
494 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
495 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
496 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
497 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
498 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
499 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
500 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
501 |
+
sequence_length)`.
|
502 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
503 |
+
heads.
|
504 |
+
"""
|
505 |
+
|
506 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
507 |
+
last_hidden_state: torch.FloatTensor = None
|
508 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
509 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
510 |
+
|
511 |
+
|
512 |
+
@dataclass
|
513 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip
|
514 |
+
class SiglipOutput(ModelOutput):
|
515 |
+
"""
|
516 |
+
Args:
|
517 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
518 |
+
Contrastive loss for image-text similarity.
|
519 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
520 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
521 |
+
similarity scores.
|
522 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
523 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
524 |
+
similarity scores.
|
525 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
526 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
527 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
528 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
529 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
530 |
+
The output of the [`SiglipTextModel`].
|
531 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
532 |
+
The output of the [`SiglipVisionModel`].
|
533 |
+
"""
|
534 |
+
|
535 |
+
loss: Optional[torch.FloatTensor] = None
|
536 |
+
logits_per_image: torch.FloatTensor = None
|
537 |
+
logits_per_text: torch.FloatTensor = None
|
538 |
+
text_embeds: torch.FloatTensor = None
|
539 |
+
image_embeds: torch.FloatTensor = None
|
540 |
+
text_model_output: BaseModelOutputWithPooling = None
|
541 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
542 |
+
|
543 |
+
def to_tuple(self) -> Tuple[Any]:
|
544 |
+
return tuple(
|
545 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
546 |
+
for k in self.keys()
|
547 |
+
)
|
548 |
+
|
549 |
+
|
550 |
+
@torch.jit.script_if_tracing
|
551 |
+
def filter_position_ids(patch_attention_mask: torch.Tensor, position_ids: torch.Tensor, boundaries: torch.Tensor, num_patches_per_side: int):
|
552 |
+
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
|
553 |
+
nb_patches_h = p_attn_mask[:, 0].sum()
|
554 |
+
nb_patches_w = p_attn_mask[0].sum()
|
555 |
+
|
556 |
+
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
|
557 |
+
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
|
558 |
+
|
559 |
+
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
|
560 |
+
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
|
561 |
+
|
562 |
+
pos_ids = (bucket_coords_h[:, None] * num_patches_per_side + bucket_coords_w).flatten()
|
563 |
+
position_ids[batch_idx][p_attn_mask.view(-1)] = pos_ids
|
564 |
+
return position_ids
|
565 |
+
|
566 |
+
|
567 |
+
class SiglipVisionEmbeddings(nn.Module):
|
568 |
+
def __init__(self, config: SiglipVisionConfig):
|
569 |
+
super().__init__()
|
570 |
+
self.config = config
|
571 |
+
self.embed_dim = config.hidden_size
|
572 |
+
self.image_size = config.image_size
|
573 |
+
self.patch_size = config.patch_size
|
574 |
+
|
575 |
+
self.patch_embedding = nn.Conv2d(
|
576 |
+
in_channels=config.num_channels,
|
577 |
+
out_channels=self.embed_dim,
|
578 |
+
kernel_size=self.patch_size,
|
579 |
+
stride=self.patch_size,
|
580 |
+
padding="valid",
|
581 |
+
)
|
582 |
+
|
583 |
+
self.num_patches_per_side = self.image_size // self.patch_size
|
584 |
+
self.num_patches = self.num_patches_per_side**2
|
585 |
+
self.num_positions = self.num_patches
|
586 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
587 |
+
|
588 |
+
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
|
589 |
+
batch_size = pixel_values.size(0)
|
590 |
+
|
591 |
+
patch_embeds = self.patch_embedding(pixel_values)
|
592 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
593 |
+
|
594 |
+
max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
|
595 |
+
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
|
596 |
+
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
|
597 |
+
position_ids = torch.full(
|
598 |
+
size=(
|
599 |
+
batch_size,
|
600 |
+
max_nb_patches_h * max_nb_patches_w,
|
601 |
+
),
|
602 |
+
fill_value=0,
|
603 |
+
)
|
604 |
+
|
605 |
+
position_ids = filter_position_ids(patch_attention_mask, position_ids, boundaries, self.num_patches_per_side)
|
606 |
+
position_ids = position_ids.to(self.position_embedding.weight.device)
|
607 |
+
embeddings = embeddings + self.position_embedding(position_ids)
|
608 |
+
return embeddings
|
609 |
+
|
610 |
+
|
611 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip
|
612 |
+
class SiglipTextEmbeddings(nn.Module):
|
613 |
+
def __init__(self, config: SiglipTextConfig):
|
614 |
+
super().__init__()
|
615 |
+
embed_dim = config.hidden_size
|
616 |
+
|
617 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
618 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
619 |
+
|
620 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
621 |
+
self.register_buffer(
|
622 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
623 |
+
)
|
624 |
+
|
625 |
+
def forward(
|
626 |
+
self,
|
627 |
+
input_ids: Optional[torch.LongTensor] = None,
|
628 |
+
position_ids: Optional[torch.LongTensor] = None,
|
629 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
630 |
+
) -> torch.Tensor:
|
631 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
632 |
+
|
633 |
+
if position_ids is None:
|
634 |
+
position_ids = self.position_ids[:, :seq_length]
|
635 |
+
|
636 |
+
if inputs_embeds is None:
|
637 |
+
inputs_embeds = self.token_embedding(input_ids)
|
638 |
+
|
639 |
+
position_embeddings = self.position_embedding(position_ids)
|
640 |
+
embeddings = inputs_embeds + position_embeddings
|
641 |
+
|
642 |
+
return embeddings
|
643 |
+
|
644 |
+
|
645 |
+
class SiglipAttention(nn.Module):
|
646 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
647 |
+
|
648 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
649 |
+
def __init__(self, config):
|
650 |
+
super().__init__()
|
651 |
+
self.config = config
|
652 |
+
self.embed_dim = config.hidden_size
|
653 |
+
self.num_heads = config.num_attention_heads
|
654 |
+
self.head_dim = self.embed_dim // self.num_heads
|
655 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
656 |
+
raise ValueError(
|
657 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
658 |
+
f" {self.num_heads})."
|
659 |
+
)
|
660 |
+
self.scale = self.head_dim**-0.5
|
661 |
+
self.dropout = config.attention_dropout
|
662 |
+
|
663 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
664 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
665 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
666 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
667 |
+
|
668 |
+
def forward(
|
669 |
+
self,
|
670 |
+
hidden_states: torch.Tensor,
|
671 |
+
attention_mask: Optional[torch.Tensor] = None,
|
672 |
+
output_attentions: Optional[bool] = False,
|
673 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
674 |
+
"""Input shape: Batch x Time x Channel"""
|
675 |
+
|
676 |
+
batch_size, q_len, _ = hidden_states.size()
|
677 |
+
|
678 |
+
query_states = self.q_proj(hidden_states)
|
679 |
+
key_states = self.k_proj(hidden_states)
|
680 |
+
value_states = self.v_proj(hidden_states)
|
681 |
+
|
682 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
683 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
684 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
685 |
+
|
686 |
+
k_v_seq_len = key_states.shape[-2]
|
687 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
688 |
+
|
689 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
690 |
+
raise ValueError(
|
691 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
692 |
+
f" {attn_weights.size()}"
|
693 |
+
)
|
694 |
+
|
695 |
+
if attention_mask is not None:
|
696 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
697 |
+
raise ValueError(
|
698 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
699 |
+
)
|
700 |
+
attn_weights = attn_weights + attention_mask
|
701 |
+
|
702 |
+
# upcast attention to fp32
|
703 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
704 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
705 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
706 |
+
|
707 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
708 |
+
raise ValueError(
|
709 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
710 |
+
f" {attn_output.size()}"
|
711 |
+
)
|
712 |
+
|
713 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
714 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
715 |
+
|
716 |
+
attn_output = self.out_proj(attn_output)
|
717 |
+
|
718 |
+
return attn_output, attn_weights
|
719 |
+
|
720 |
+
|
721 |
+
class SiglipFlashAttention2(SiglipAttention):
|
722 |
+
"""
|
723 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
724 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
725 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
726 |
+
"""
|
727 |
+
|
728 |
+
def __init__(self, *args, **kwargs):
|
729 |
+
super().__init__(*args, **kwargs)
|
730 |
+
self.is_causal = False # Hack to make sure we don't use a causal mask
|
731 |
+
|
732 |
+
def forward(
|
733 |
+
self,
|
734 |
+
hidden_states: torch.Tensor,
|
735 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
736 |
+
position_ids: Optional[torch.LongTensor] = None,
|
737 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
738 |
+
output_attentions: bool = False,
|
739 |
+
use_cache: bool = False,
|
740 |
+
**kwargs,
|
741 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
742 |
+
output_attentions = False
|
743 |
+
|
744 |
+
bsz, q_len, _ = hidden_states.size()
|
745 |
+
|
746 |
+
query_states = self.q_proj(hidden_states)
|
747 |
+
key_states = self.k_proj(hidden_states)
|
748 |
+
value_states = self.v_proj(hidden_states)
|
749 |
+
|
750 |
+
# Flash attention requires the input to have the shape
|
751 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
752 |
+
# therefore we just need to keep the original shape
|
753 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
754 |
+
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
755 |
+
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
756 |
+
|
757 |
+
kv_seq_len = key_states.shape[-2]
|
758 |
+
if past_key_value is not None:
|
759 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
760 |
+
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
761 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
762 |
+
|
763 |
+
# if past_key_value is not None:
|
764 |
+
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
765 |
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
766 |
+
|
767 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
768 |
+
# to be able to avoid many of these transpose/reshape/view.
|
769 |
+
query_states = query_states.transpose(1, 2)
|
770 |
+
key_states = key_states.transpose(1, 2)
|
771 |
+
value_states = value_states.transpose(1, 2)
|
772 |
+
|
773 |
+
dropout_rate = self.dropout if self.training else 0.0
|
774 |
+
|
775 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
776 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
777 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
778 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
779 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
780 |
+
|
781 |
+
input_dtype = query_states.dtype
|
782 |
+
if input_dtype == torch.float32:
|
783 |
+
if torch.is_autocast_enabled():
|
784 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
785 |
+
# Handle the case where the model is quantized
|
786 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
787 |
+
target_dtype = self.config._pre_quantization_dtype
|
788 |
+
else:
|
789 |
+
target_dtype = self.q_proj.weight.dtype
|
790 |
+
|
791 |
+
logger.warning_once(
|
792 |
+
"The input hidden states seems to be silently casted in float32, this might be related to the fact"
|
793 |
+
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
794 |
+
f" {target_dtype}."
|
795 |
+
)
|
796 |
+
|
797 |
+
query_states = query_states.to(target_dtype)
|
798 |
+
key_states = key_states.to(target_dtype)
|
799 |
+
value_states = value_states.to(target_dtype)
|
800 |
+
|
801 |
+
attn_output = self._flash_attention_forward(
|
802 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
803 |
+
)
|
804 |
+
|
805 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
|
806 |
+
attn_output = self.out_proj(attn_output)
|
807 |
+
|
808 |
+
if not output_attentions:
|
809 |
+
attn_weights = None
|
810 |
+
|
811 |
+
return attn_output, attn_weights
|
812 |
+
|
813 |
+
def _flash_attention_forward(
|
814 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
815 |
+
):
|
816 |
+
"""
|
817 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
818 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
819 |
+
Args:
|
820 |
+
query_states (`torch.Tensor`):
|
821 |
+
Input query states to be passed to Flash Attention API
|
822 |
+
key_states (`torch.Tensor`):
|
823 |
+
Input key states to be passed to Flash Attention API
|
824 |
+
value_states (`torch.Tensor`):
|
825 |
+
Input value states to be passed to Flash Attention API
|
826 |
+
attention_mask (`torch.Tensor`):
|
827 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
828 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
829 |
+
dropout (`int`, *optional*):
|
830 |
+
Attention dropout
|
831 |
+
softmax_scale (`float`, *optional*):
|
832 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
833 |
+
"""
|
834 |
+
|
835 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
836 |
+
causal = self.is_causal and query_length != 1
|
837 |
+
|
838 |
+
# Contains at least one padding token in the sequence
|
839 |
+
if attention_mask is not None:
|
840 |
+
batch_size = query_states.shape[0]
|
841 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
842 |
+
query_states, key_states, value_states, attention_mask, query_length
|
843 |
+
)
|
844 |
+
|
845 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
846 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
847 |
+
|
848 |
+
attn_output_unpad = flash_attn_varlen_func(
|
849 |
+
query_states,
|
850 |
+
key_states,
|
851 |
+
value_states,
|
852 |
+
cu_seqlens_q=cu_seqlens_q,
|
853 |
+
cu_seqlens_k=cu_seqlens_k,
|
854 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
855 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
856 |
+
dropout_p=dropout,
|
857 |
+
softmax_scale=softmax_scale,
|
858 |
+
causal=causal,
|
859 |
+
)
|
860 |
+
|
861 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
862 |
+
else:
|
863 |
+
attn_output = flash_attn_func(
|
864 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
865 |
+
)
|
866 |
+
|
867 |
+
return attn_output
|
868 |
+
|
869 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
870 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
871 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
872 |
+
|
873 |
+
key_layer = index_first_axis(
|
874 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
875 |
+
)
|
876 |
+
value_layer = index_first_axis(
|
877 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
878 |
+
)
|
879 |
+
if query_length == kv_seq_len:
|
880 |
+
query_layer = index_first_axis(
|
881 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
882 |
+
)
|
883 |
+
cu_seqlens_q = cu_seqlens_k
|
884 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
885 |
+
indices_q = indices_k
|
886 |
+
elif query_length == 1:
|
887 |
+
max_seqlen_in_batch_q = 1
|
888 |
+
cu_seqlens_q = torch.arange(
|
889 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
890 |
+
) # There is a memcpy here, that is very bad.
|
891 |
+
indices_q = cu_seqlens_q[:-1]
|
892 |
+
query_layer = query_layer.squeeze(1)
|
893 |
+
else:
|
894 |
+
# The -q_len: slice assumes left padding.
|
895 |
+
attention_mask = attention_mask[:, -query_length:]
|
896 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
897 |
+
|
898 |
+
return (
|
899 |
+
query_layer,
|
900 |
+
key_layer,
|
901 |
+
value_layer,
|
902 |
+
indices_q,
|
903 |
+
(cu_seqlens_q, cu_seqlens_k),
|
904 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
905 |
+
)
|
906 |
+
|
907 |
+
|
908 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
909 |
+
class SiglipMLP(nn.Module):
|
910 |
+
def __init__(self, config):
|
911 |
+
super().__init__()
|
912 |
+
self.config = config
|
913 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
914 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
915 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
916 |
+
|
917 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
918 |
+
hidden_states = self.fc1(hidden_states)
|
919 |
+
hidden_states = self.activation_fn(hidden_states)
|
920 |
+
hidden_states = self.fc2(hidden_states)
|
921 |
+
return hidden_states
|
922 |
+
|
923 |
+
|
924 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
925 |
+
class SiglipEncoderLayer(nn.Module):
|
926 |
+
def __init__(self, config: SiglipConfig):
|
927 |
+
super().__init__()
|
928 |
+
self.embed_dim = config.hidden_size
|
929 |
+
self.self_attn = (
|
930 |
+
SiglipAttention(config)
|
931 |
+
if not getattr(config, "_flash_attn_2_enabled", False)
|
932 |
+
else SiglipFlashAttention2(config)
|
933 |
+
)
|
934 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
935 |
+
self.mlp = SiglipMLP(config)
|
936 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
937 |
+
|
938 |
+
def forward(
|
939 |
+
self,
|
940 |
+
hidden_states: torch.Tensor,
|
941 |
+
attention_mask: torch.Tensor,
|
942 |
+
output_attentions: Optional[bool] = False,
|
943 |
+
) -> Tuple[torch.FloatTensor]:
|
944 |
+
"""
|
945 |
+
Args:
|
946 |
+
hidden_states (`torch.FloatTensor`):
|
947 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
948 |
+
attention_mask (`torch.FloatTensor`):
|
949 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
950 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
951 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
952 |
+
returned tensors for more detail.
|
953 |
+
"""
|
954 |
+
residual = hidden_states
|
955 |
+
|
956 |
+
hidden_states = self.layer_norm1(hidden_states)
|
957 |
+
hidden_states, attn_weights = self.self_attn(
|
958 |
+
hidden_states=hidden_states,
|
959 |
+
attention_mask=attention_mask,
|
960 |
+
output_attentions=output_attentions,
|
961 |
+
)
|
962 |
+
hidden_states = residual + hidden_states
|
963 |
+
|
964 |
+
residual = hidden_states
|
965 |
+
hidden_states = self.layer_norm2(hidden_states)
|
966 |
+
hidden_states = self.mlp(hidden_states)
|
967 |
+
hidden_states = residual + hidden_states
|
968 |
+
|
969 |
+
outputs = (hidden_states,)
|
970 |
+
|
971 |
+
if output_attentions:
|
972 |
+
outputs += (attn_weights,)
|
973 |
+
|
974 |
+
return outputs
|
975 |
+
|
976 |
+
|
977 |
+
class SiglipPreTrainedModel(PreTrainedModel):
|
978 |
+
"""
|
979 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
980 |
+
models.
|
981 |
+
"""
|
982 |
+
|
983 |
+
config_class = SiglipConfig
|
984 |
+
base_model_prefix = "siglip"
|
985 |
+
supports_gradient_checkpointing = True
|
986 |
+
|
987 |
+
def _init_weights(self, module):
|
988 |
+
"""Initialize the weights"""
|
989 |
+
|
990 |
+
if isinstance(module, SiglipVisionEmbeddings):
|
991 |
+
width = (
|
992 |
+
self.config.vision_config.hidden_size
|
993 |
+
if isinstance(self.config, SiglipConfig)
|
994 |
+
else self.config.hidden_size
|
995 |
+
)
|
996 |
+
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
997 |
+
elif isinstance(module, nn.Embedding):
|
998 |
+
default_flax_embed_init(module.weight)
|
999 |
+
elif isinstance(module, SiglipAttention):
|
1000 |
+
nn.init.normal_(module.q_proj.weight)
|
1001 |
+
nn.init.normal_(module.k_proj.weight)
|
1002 |
+
nn.init.normal_(module.v_proj.weight)
|
1003 |
+
nn.init.normal_(module.out_proj.weight)
|
1004 |
+
nn.init.zeros_(module.q_proj.bias)
|
1005 |
+
nn.init.zeros_(module.k_proj.bias)
|
1006 |
+
nn.init.zeros_(module.v_proj.bias)
|
1007 |
+
nn.init.zeros_(module.out_proj.bias)
|
1008 |
+
elif isinstance(module, SiglipMLP):
|
1009 |
+
nn.init.normal_(module.fc1.weight)
|
1010 |
+
nn.init.normal_(module.fc2.weight)
|
1011 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
1012 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
1013 |
+
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
|
1014 |
+
nn.init.normal_(module.probe.data)
|
1015 |
+
nn.init.normal_(module.attention.in_proj_weight.data)
|
1016 |
+
nn.init.zeros_(module.attention.in_proj_bias.data)
|
1017 |
+
elif isinstance(module, SiglipModel):
|
1018 |
+
logit_scale_init = torch.tensor(0.0)
|
1019 |
+
module.logit_scale.data.fill_(logit_scale_init)
|
1020 |
+
module.logit_bias.data.zero_()
|
1021 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
1022 |
+
lecun_normal_(module.weight)
|
1023 |
+
if module.bias is not None:
|
1024 |
+
nn.init.zeros_(module.bias)
|
1025 |
+
elif isinstance(module, nn.LayerNorm):
|
1026 |
+
module.bias.data.zero_()
|
1027 |
+
module.weight.data.fill_(1.0)
|
1028 |
+
|
1029 |
+
|
1030 |
+
SIGLIP_START_DOCSTRING = r"""
|
1031 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1032 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1033 |
+
etc.)
|
1034 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1035 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1036 |
+
and behavior.
|
1037 |
+
Parameters:
|
1038 |
+
config ([`SiglipConfig`]): Model configuration class with all the parameters of the model.
|
1039 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1040 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1041 |
+
"""
|
1042 |
+
|
1043 |
+
SIGLIP_TEXT_INPUTS_DOCSTRING = r"""
|
1044 |
+
Args:
|
1045 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1046 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1047 |
+
it.
|
1048 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1049 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1050 |
+
[What are input IDs?](../glossary#input-ids)
|
1051 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1052 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1053 |
+
- 1 for tokens that are **not masked**,
|
1054 |
+
- 0 for tokens that are **masked**.
|
1055 |
+
[What are attention masks?](../glossary#attention-mask)
|
1056 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1057 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1058 |
+
config.max_position_embeddings - 1]`.
|
1059 |
+
[What are position IDs?](../glossary#position-ids)
|
1060 |
+
output_attentions (`bool`, *optional*):
|
1061 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1062 |
+
tensors for more detail.
|
1063 |
+
output_hidden_states (`bool`, *optional*):
|
1064 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1065 |
+
more detail.
|
1066 |
+
return_dict (`bool`, *optional*):
|
1067 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1068 |
+
"""
|
1069 |
+
|
1070 |
+
SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
1071 |
+
Args:
|
1072 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
1073 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
1074 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
1075 |
+
output_attentions (`bool`, *optional*):
|
1076 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1077 |
+
tensors for more detail.
|
1078 |
+
output_hidden_states (`bool`, *optional*):
|
1079 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1080 |
+
more detail.
|
1081 |
+
return_dict (`bool`, *optional*):
|
1082 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1083 |
+
"""
|
1084 |
+
|
1085 |
+
SIGLIP_INPUTS_DOCSTRING = r"""
|
1086 |
+
Args:
|
1087 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1088 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1089 |
+
it.
|
1090 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1091 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1092 |
+
[What are input IDs?](../glossary#input-ids)
|
1093 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1094 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1095 |
+
- 1 for tokens that are **not masked**,
|
1096 |
+
- 0 for tokens that are **masked**.
|
1097 |
+
[What are attention masks?](../glossary#attention-mask)
|
1098 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1099 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1100 |
+
config.max_position_embeddings - 1]`.
|
1101 |
+
[What are position IDs?](../glossary#position-ids)
|
1102 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
1103 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
1104 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
1105 |
+
return_loss (`bool`, *optional*):
|
1106 |
+
Whether or not to return the contrastive loss.
|
1107 |
+
output_attentions (`bool`, *optional*):
|
1108 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1109 |
+
tensors for more detail.
|
1110 |
+
output_hidden_states (`bool`, *optional*):
|
1111 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1112 |
+
more detail.
|
1113 |
+
return_dict (`bool`, *optional*):
|
1114 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1115 |
+
"""
|
1116 |
+
|
1117 |
+
|
1118 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
1119 |
+
class SiglipEncoder(nn.Module):
|
1120 |
+
"""
|
1121 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
1122 |
+
[`SiglipEncoderLayer`].
|
1123 |
+
Args:
|
1124 |
+
config: SiglipConfig
|
1125 |
+
"""
|
1126 |
+
|
1127 |
+
def __init__(self, config: SiglipConfig):
|
1128 |
+
super().__init__()
|
1129 |
+
self.config = config
|
1130 |
+
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
1131 |
+
self.gradient_checkpointing = False
|
1132 |
+
|
1133 |
+
# Ignore copy
|
1134 |
+
def forward(
|
1135 |
+
self,
|
1136 |
+
inputs_embeds,
|
1137 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1138 |
+
output_attentions: Optional[bool] = None,
|
1139 |
+
output_hidden_states: Optional[bool] = None,
|
1140 |
+
return_dict: Optional[bool] = None,
|
1141 |
+
) -> Union[Tuple, BaseModelOutput]:
|
1142 |
+
r"""
|
1143 |
+
Args:
|
1144 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
1145 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1146 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1147 |
+
than the model's internal embedding lookup matrix.
|
1148 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1149 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1150 |
+
- 1 for tokens that are **not masked**,
|
1151 |
+
- 0 for tokens that are **masked**.
|
1152 |
+
[What are attention masks?](../glossary#attention-mask)
|
1153 |
+
output_attentions (`bool`, *optional*):
|
1154 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1155 |
+
returned tensors for more detail.
|
1156 |
+
output_hidden_states (`bool`, *optional*):
|
1157 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1158 |
+
for more detail.
|
1159 |
+
return_dict (`bool`, *optional*):
|
1160 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1161 |
+
"""
|
1162 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1163 |
+
output_hidden_states = (
|
1164 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1165 |
+
)
|
1166 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1167 |
+
|
1168 |
+
encoder_states = () if output_hidden_states else None
|
1169 |
+
all_attentions = () if output_attentions else None
|
1170 |
+
|
1171 |
+
hidden_states = inputs_embeds
|
1172 |
+
for encoder_layer in self.layers:
|
1173 |
+
if output_hidden_states:
|
1174 |
+
encoder_states = encoder_states + (hidden_states,)
|
1175 |
+
if self.gradient_checkpointing and self.training:
|
1176 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1177 |
+
encoder_layer.__call__,
|
1178 |
+
hidden_states,
|
1179 |
+
attention_mask,
|
1180 |
+
output_attentions,
|
1181 |
+
)
|
1182 |
+
else:
|
1183 |
+
layer_outputs = encoder_layer(
|
1184 |
+
hidden_states,
|
1185 |
+
attention_mask,
|
1186 |
+
output_attentions=output_attentions,
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
hidden_states = layer_outputs[0]
|
1190 |
+
|
1191 |
+
if output_attentions:
|
1192 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
1193 |
+
|
1194 |
+
if output_hidden_states:
|
1195 |
+
encoder_states = encoder_states + (hidden_states,)
|
1196 |
+
|
1197 |
+
if not return_dict:
|
1198 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
1199 |
+
return BaseModelOutput(
|
1200 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
1201 |
+
)
|
1202 |
+
|
1203 |
+
|
1204 |
+
class SiglipTextTransformer(nn.Module):
|
1205 |
+
def __init__(self, config: SiglipTextConfig):
|
1206 |
+
super().__init__()
|
1207 |
+
self.config = config
|
1208 |
+
embed_dim = config.hidden_size
|
1209 |
+
self.embeddings = SiglipTextEmbeddings(config)
|
1210 |
+
self.encoder = SiglipEncoder(config)
|
1211 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1212 |
+
|
1213 |
+
self.head = nn.Linear(embed_dim, embed_dim)
|
1214 |
+
|
1215 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
1216 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
1217 |
+
def forward(
|
1218 |
+
self,
|
1219 |
+
input_ids: Optional[torch.Tensor] = None,
|
1220 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1221 |
+
position_ids: Optional[torch.Tensor] = None,
|
1222 |
+
output_attentions: Optional[bool] = None,
|
1223 |
+
output_hidden_states: Optional[bool] = None,
|
1224 |
+
return_dict: Optional[bool] = None,
|
1225 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1226 |
+
r"""
|
1227 |
+
Returns:
|
1228 |
+
"""
|
1229 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1230 |
+
output_hidden_states = (
|
1231 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1232 |
+
)
|
1233 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1234 |
+
|
1235 |
+
if input_ids is None:
|
1236 |
+
raise ValueError("You have to specify input_ids")
|
1237 |
+
|
1238 |
+
input_shape = input_ids.size()
|
1239 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1240 |
+
|
1241 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
1242 |
+
|
1243 |
+
# note: SigLIP's text model does not use a causal mask, unlike the original CLIP model.
|
1244 |
+
# expand attention_mask
|
1245 |
+
if attention_mask is not None:
|
1246 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
1247 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
1248 |
+
|
1249 |
+
encoder_outputs = self.encoder(
|
1250 |
+
inputs_embeds=hidden_states,
|
1251 |
+
attention_mask=attention_mask,
|
1252 |
+
output_attentions=output_attentions,
|
1253 |
+
output_hidden_states=output_hidden_states,
|
1254 |
+
return_dict=return_dict,
|
1255 |
+
)
|
1256 |
+
|
1257 |
+
last_hidden_state = encoder_outputs[0]
|
1258 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
1259 |
+
|
1260 |
+
# Assuming "sticky" EOS tokenization, last token is always EOS.
|
1261 |
+
pooled_output = last_hidden_state[:, -1, :]
|
1262 |
+
pooled_output = self.head(pooled_output)
|
1263 |
+
|
1264 |
+
if not return_dict:
|
1265 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1266 |
+
|
1267 |
+
return BaseModelOutputWithPooling(
|
1268 |
+
last_hidden_state=last_hidden_state,
|
1269 |
+
pooler_output=pooled_output,
|
1270 |
+
hidden_states=encoder_outputs.hidden_states,
|
1271 |
+
attentions=encoder_outputs.attentions,
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
|
1275 |
+
@add_start_docstrings(
|
1276 |
+
"""The text model from SigLIP without any head or projection on top.""",
|
1277 |
+
SIGLIP_START_DOCSTRING,
|
1278 |
+
)
|
1279 |
+
class SiglipTextModel(SiglipPreTrainedModel):
|
1280 |
+
config_class = SiglipTextConfig
|
1281 |
+
|
1282 |
+
_no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"]
|
1283 |
+
|
1284 |
+
def __init__(self, config: SiglipTextConfig):
|
1285 |
+
super().__init__(config)
|
1286 |
+
self.text_model = SiglipTextTransformer(config)
|
1287 |
+
# Initialize weights and apply final processing
|
1288 |
+
self.post_init()
|
1289 |
+
|
1290 |
+
def get_input_embeddings(self) -> nn.Module:
|
1291 |
+
return self.text_model.embeddings.token_embedding
|
1292 |
+
|
1293 |
+
def set_input_embeddings(self, value):
|
1294 |
+
self.text_model.embeddings.token_embedding = value
|
1295 |
+
|
1296 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
1297 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
1298 |
+
def forward(
|
1299 |
+
self,
|
1300 |
+
input_ids: Optional[torch.Tensor] = None,
|
1301 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1302 |
+
position_ids: Optional[torch.Tensor] = None,
|
1303 |
+
output_attentions: Optional[bool] = None,
|
1304 |
+
output_hidden_states: Optional[bool] = None,
|
1305 |
+
return_dict: Optional[bool] = None,
|
1306 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1307 |
+
r"""
|
1308 |
+
Returns:
|
1309 |
+
Examples:
|
1310 |
+
```python
|
1311 |
+
>>> from transformers import AutoTokenizer, SiglipTextModel
|
1312 |
+
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
1313 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1314 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
1315 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
1316 |
+
>>> outputs = model(**inputs)
|
1317 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1318 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
1319 |
+
```"""
|
1320 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1321 |
+
|
1322 |
+
return self.text_model(
|
1323 |
+
input_ids=input_ids,
|
1324 |
+
attention_mask=attention_mask,
|
1325 |
+
position_ids=position_ids,
|
1326 |
+
output_attentions=output_attentions,
|
1327 |
+
output_hidden_states=output_hidden_states,
|
1328 |
+
return_dict=return_dict,
|
1329 |
+
)
|
1330 |
+
|
1331 |
+
|
1332 |
+
class SiglipVisionTransformer(nn.Module):
|
1333 |
+
def __init__(self, config: SiglipVisionConfig):
|
1334 |
+
super().__init__()
|
1335 |
+
self.config = config
|
1336 |
+
embed_dim = config.hidden_size
|
1337 |
+
|
1338 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
1339 |
+
self.encoder = SiglipEncoder(config)
|
1340 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
1341 |
+
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
1342 |
+
|
1343 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1344 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
1345 |
+
def forward(
|
1346 |
+
self,
|
1347 |
+
pixel_values,
|
1348 |
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
1349 |
+
output_attentions: Optional[bool] = None,
|
1350 |
+
output_hidden_states: Optional[bool] = None,
|
1351 |
+
return_dict: Optional[bool] = None,
|
1352 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1353 |
+
r"""
|
1354 |
+
Returns:
|
1355 |
+
"""
|
1356 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1357 |
+
output_hidden_states = (
|
1358 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1359 |
+
)
|
1360 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1361 |
+
|
1362 |
+
batch_size = pixel_values.size(0)
|
1363 |
+
if patch_attention_mask is None:
|
1364 |
+
patch_attention_mask = torch.ones(
|
1365 |
+
size=(
|
1366 |
+
batch_size,
|
1367 |
+
pixel_values.size(2) // self.config.patch_size,
|
1368 |
+
pixel_values.size(3) // self.config.patch_size,
|
1369 |
+
),
|
1370 |
+
dtype=torch.bool,
|
1371 |
+
device=pixel_values.device,
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
|
1375 |
+
|
1376 |
+
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
|
1377 |
+
# The call to `_upad_input` in `_flash_attention_forward` is expensive
|
1378 |
+
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
|
1379 |
+
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
|
1380 |
+
if not torch.any(~patch_attention_mask):
|
1381 |
+
attention_mask=None
|
1382 |
+
else:
|
1383 |
+
attention_mask = (
|
1384 |
+
_prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
|
1385 |
+
if not self.config._flash_attn_2_enabled
|
1386 |
+
else patch_attention_mask
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
encoder_outputs = self.encoder(
|
1390 |
+
inputs_embeds=hidden_states,
|
1391 |
+
attention_mask=attention_mask,
|
1392 |
+
output_attentions=output_attentions,
|
1393 |
+
output_hidden_states=output_hidden_states,
|
1394 |
+
return_dict=return_dict,
|
1395 |
+
)
|
1396 |
+
|
1397 |
+
last_hidden_state = encoder_outputs[0]
|
1398 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
1399 |
+
|
1400 |
+
pooled_output = self.head(
|
1401 |
+
hidden_state=last_hidden_state,
|
1402 |
+
attention_mask=patch_attention_mask,
|
1403 |
+
)
|
1404 |
+
|
1405 |
+
if not return_dict:
|
1406 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
1407 |
+
|
1408 |
+
return BaseModelOutputWithPooling(
|
1409 |
+
last_hidden_state=last_hidden_state,
|
1410 |
+
pooler_output=pooled_output,
|
1411 |
+
hidden_states=encoder_outputs.hidden_states,
|
1412 |
+
attentions=encoder_outputs.attentions,
|
1413 |
+
)
|
1414 |
+
|
1415 |
+
|
1416 |
+
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
1417 |
+
"""Multihead Attention Pooling."""
|
1418 |
+
|
1419 |
+
def __init__(self, config: SiglipVisionConfig):
|
1420 |
+
super().__init__()
|
1421 |
+
|
1422 |
+
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
1423 |
+
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
1424 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1425 |
+
self.mlp = SiglipMLP(config)
|
1426 |
+
|
1427 |
+
def forward(self, hidden_state, attention_mask):
|
1428 |
+
batch_size = hidden_state.shape[0]
|
1429 |
+
probe = self.probe.repeat(batch_size, 1, 1)
|
1430 |
+
|
1431 |
+
hidden_state = self.attention(
|
1432 |
+
query=probe, key=hidden_state, value=hidden_state, key_padding_mask=~attention_mask
|
1433 |
+
)[0]
|
1434 |
+
|
1435 |
+
residual = hidden_state
|
1436 |
+
hidden_state = self.layernorm(hidden_state)
|
1437 |
+
hidden_state = residual + self.mlp(hidden_state)
|
1438 |
+
|
1439 |
+
return hidden_state[:, 0]
|
1440 |
+
|
1441 |
+
|
1442 |
+
@add_start_docstrings(
|
1443 |
+
"""The vision model from SigLIP without any head or projection on top.""",
|
1444 |
+
SIGLIP_START_DOCSTRING,
|
1445 |
+
)
|
1446 |
+
class SiglipVisionModel(SiglipPreTrainedModel):
|
1447 |
+
config_class = SiglipVisionConfig
|
1448 |
+
main_input_name = "pixel_values"
|
1449 |
+
|
1450 |
+
def __init__(self, config: SiglipVisionConfig):
|
1451 |
+
super().__init__(config)
|
1452 |
+
|
1453 |
+
self.vision_model = SiglipVisionTransformer(config)
|
1454 |
+
|
1455 |
+
# Initialize weights and apply final processing
|
1456 |
+
self.post_init()
|
1457 |
+
|
1458 |
+
def get_input_embeddings(self) -> nn.Module:
|
1459 |
+
return self.vision_model.embeddings.patch_embedding
|
1460 |
+
|
1461 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1462 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
1463 |
+
def forward(
|
1464 |
+
self,
|
1465 |
+
pixel_values,
|
1466 |
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
1467 |
+
output_attentions: Optional[bool] = None,
|
1468 |
+
output_hidden_states: Optional[bool] = None,
|
1469 |
+
return_dict: Optional[bool] = None,
|
1470 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1471 |
+
r"""
|
1472 |
+
Returns:
|
1473 |
+
Examples:
|
1474 |
+
```python
|
1475 |
+
>>> from PIL import Image
|
1476 |
+
>>> import requests
|
1477 |
+
>>> from transformers import AutoProcessor, SiglipVisionModel
|
1478 |
+
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
1479 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1480 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1481 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1482 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1483 |
+
>>> outputs = model(**inputs)
|
1484 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
1485 |
+
>>> pooled_output = outputs.pooler_output # pooled features
|
1486 |
+
```"""
|
1487 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1488 |
+
|
1489 |
+
return self.vision_model(
|
1490 |
+
pixel_values=pixel_values,
|
1491 |
+
patch_attention_mask=patch_attention_mask,
|
1492 |
+
output_attentions=output_attentions,
|
1493 |
+
output_hidden_states=output_hidden_states,
|
1494 |
+
return_dict=return_dict,
|
1495 |
+
)
|
1496 |
+
|
1497 |
+
|
1498 |
+
@add_start_docstrings(SIGLIP_START_DOCSTRING)
|
1499 |
+
class SiglipModel(SiglipPreTrainedModel):
|
1500 |
+
config_class = SiglipConfig
|
1501 |
+
|
1502 |
+
def __init__(self, config: SiglipConfig):
|
1503 |
+
super().__init__(config)
|
1504 |
+
|
1505 |
+
if not isinstance(config.text_config, SiglipTextConfig):
|
1506 |
+
raise ValueError(
|
1507 |
+
"config.text_config is expected to be of type SiglipTextConfig but is of type"
|
1508 |
+
f" {type(config.text_config)}."
|
1509 |
+
)
|
1510 |
+
|
1511 |
+
if not isinstance(config.vision_config, SiglipVisionConfig):
|
1512 |
+
raise ValueError(
|
1513 |
+
"config.vision_config is expected to be of type SiglipVisionConfig but is of type"
|
1514 |
+
f" {type(config.vision_config)}."
|
1515 |
+
)
|
1516 |
+
|
1517 |
+
text_config = config.text_config
|
1518 |
+
vision_config = config.vision_config
|
1519 |
+
|
1520 |
+
self.text_model = SiglipTextTransformer(text_config)
|
1521 |
+
self.vision_model = SiglipVisionTransformer(vision_config)
|
1522 |
+
|
1523 |
+
self.logit_scale = nn.Parameter(torch.randn(1))
|
1524 |
+
self.logit_bias = nn.Parameter(torch.randn(1))
|
1525 |
+
|
1526 |
+
# Initialize weights and apply final processing
|
1527 |
+
self.post_init()
|
1528 |
+
|
1529 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
1530 |
+
def get_text_features(
|
1531 |
+
self,
|
1532 |
+
input_ids: Optional[torch.Tensor] = None,
|
1533 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1534 |
+
position_ids: Optional[torch.Tensor] = None,
|
1535 |
+
output_attentions: Optional[bool] = None,
|
1536 |
+
output_hidden_states: Optional[bool] = None,
|
1537 |
+
return_dict: Optional[bool] = None,
|
1538 |
+
) -> torch.FloatTensor:
|
1539 |
+
r"""
|
1540 |
+
Returns:
|
1541 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1542 |
+
applying the projection layer to the pooled output of [`SiglipTextModel`].
|
1543 |
+
Examples:
|
1544 |
+
```python
|
1545 |
+
>>> from transformers import AutoTokenizer, AutoModel
|
1546 |
+
>>> import torch
|
1547 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1548 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
1549 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
1550 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
1551 |
+
>>> with torch.no_grad():
|
1552 |
+
... text_features = model.get_text_features(**inputs)
|
1553 |
+
```"""
|
1554 |
+
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1555 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1556 |
+
output_hidden_states = (
|
1557 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1558 |
+
)
|
1559 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1560 |
+
|
1561 |
+
text_outputs = self.text_model(
|
1562 |
+
input_ids=input_ids,
|
1563 |
+
attention_mask=attention_mask,
|
1564 |
+
position_ids=position_ids,
|
1565 |
+
output_attentions=output_attentions,
|
1566 |
+
output_hidden_states=output_hidden_states,
|
1567 |
+
return_dict=return_dict,
|
1568 |
+
)
|
1569 |
+
|
1570 |
+
pooled_output = text_outputs[1]
|
1571 |
+
|
1572 |
+
return pooled_output
|
1573 |
+
|
1574 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
1575 |
+
def get_image_features(
|
1576 |
+
self,
|
1577 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1578 |
+
output_attentions: Optional[bool] = None,
|
1579 |
+
output_hidden_states: Optional[bool] = None,
|
1580 |
+
return_dict: Optional[bool] = None,
|
1581 |
+
) -> torch.FloatTensor:
|
1582 |
+
r"""
|
1583 |
+
Returns:
|
1584 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1585 |
+
applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
1586 |
+
Examples:
|
1587 |
+
```python
|
1588 |
+
>>> from PIL import Image
|
1589 |
+
>>> import requests
|
1590 |
+
>>> from transformers import AutoProcessor, AutoModel
|
1591 |
+
>>> import torch
|
1592 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1593 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1594 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1595 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1596 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1597 |
+
>>> with torch.no_grad():
|
1598 |
+
... image_features = model.get_image_features(**inputs)
|
1599 |
+
```"""
|
1600 |
+
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
1601 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1602 |
+
output_hidden_states = (
|
1603 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1604 |
+
)
|
1605 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1606 |
+
|
1607 |
+
vision_outputs = self.vision_model(
|
1608 |
+
pixel_values=pixel_values,
|
1609 |
+
output_attentions=output_attentions,
|
1610 |
+
output_hidden_states=output_hidden_states,
|
1611 |
+
return_dict=return_dict,
|
1612 |
+
)
|
1613 |
+
|
1614 |
+
pooled_output = vision_outputs[1]
|
1615 |
+
|
1616 |
+
return pooled_output
|
1617 |
+
|
1618 |
+
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
|
1619 |
+
@replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig)
|
1620 |
+
def forward(
|
1621 |
+
self,
|
1622 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1623 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1624 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1625 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1626 |
+
return_loss: Optional[bool] = None,
|
1627 |
+
output_attentions: Optional[bool] = None,
|
1628 |
+
output_hidden_states: Optional[bool] = None,
|
1629 |
+
return_dict: Optional[bool] = None,
|
1630 |
+
) -> Union[Tuple, SiglipOutput]:
|
1631 |
+
r"""
|
1632 |
+
Returns:
|
1633 |
+
Examples:
|
1634 |
+
```python
|
1635 |
+
>>> from PIL import Image
|
1636 |
+
>>> import requests
|
1637 |
+
>>> from transformers import AutoProcessor, AutoModel
|
1638 |
+
>>> import torch
|
1639 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
1640 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
1641 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1642 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1643 |
+
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
|
1644 |
+
>>> # important: we pass `padding=max_length` since the model was trained with this
|
1645 |
+
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
|
1646 |
+
>>> with torch.no_grad():
|
1647 |
+
... outputs = model(**inputs)
|
1648 |
+
>>> logits_per_image = outputs.logits_per_image
|
1649 |
+
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
|
1650 |
+
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
1651 |
+
31.9% that image 0 is 'a photo of 2 cats'
|
1652 |
+
```"""
|
1653 |
+
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1654 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1655 |
+
output_hidden_states = (
|
1656 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1657 |
+
)
|
1658 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1659 |
+
|
1660 |
+
vision_outputs = self.vision_model(
|
1661 |
+
pixel_values=pixel_values,
|
1662 |
+
output_attentions=output_attentions,
|
1663 |
+
output_hidden_states=output_hidden_states,
|
1664 |
+
return_dict=return_dict,
|
1665 |
+
)
|
1666 |
+
|
1667 |
+
text_outputs = self.text_model(
|
1668 |
+
input_ids=input_ids,
|
1669 |
+
attention_mask=attention_mask,
|
1670 |
+
position_ids=position_ids,
|
1671 |
+
output_attentions=output_attentions,
|
1672 |
+
output_hidden_states=output_hidden_states,
|
1673 |
+
return_dict=return_dict,
|
1674 |
+
)
|
1675 |
+
|
1676 |
+
image_embeds = vision_outputs[1]
|
1677 |
+
text_embeds = text_outputs[1]
|
1678 |
+
|
1679 |
+
# normalized features
|
1680 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1681 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1682 |
+
|
1683 |
+
# cosine similarity as logits
|
1684 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.logit_scale.exp() + self.logit_bias
|
1685 |
+
logits_per_image = logits_per_text.t()
|
1686 |
+
|
1687 |
+
loss = None
|
1688 |
+
if return_loss:
|
1689 |
+
raise NotImplementedError("SigLIP loss to be implemented")
|
1690 |
+
|
1691 |
+
if not return_dict:
|
1692 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1693 |
+
return ((loss,) + output) if loss is not None else output
|
1694 |
+
|
1695 |
+
return SiglipOutput(
|
1696 |
+
loss=loss,
|
1697 |
+
logits_per_image=logits_per_image,
|
1698 |
+
logits_per_text=logits_per_text,
|
1699 |
+
text_embeds=text_embeds,
|
1700 |
+
image_embeds=image_embeds,
|
1701 |
+
text_model_output=text_outputs,
|
1702 |
+
vision_model_output=vision_outputs,
|
1703 |
+
)
|
1704 |
+
|
1705 |
+
|
1706 |
+
def get_siglip_vision_model(_flash_attn_2_enabled=True, **kwargs):
|
1707 |
+
siglip_vision_config = {
|
1708 |
+
"hidden_size": 1152,
|
1709 |
+
"image_size": 448,
|
1710 |
+
"intermediate_size": 4304,
|
1711 |
+
"model_type": "siglip_vision_model",
|
1712 |
+
"num_attention_heads": 16,
|
1713 |
+
"num_hidden_layers": 27,
|
1714 |
+
"patch_size": 14,
|
1715 |
+
}
|
1716 |
+
|
1717 |
+
model_config = SiglipVisionConfig(**siglip_vision_config, _flash_attn_2_enabled=_flash_attn_2_enabled, **kwargs)
|
1718 |
+
|
1719 |
+
vision_model = SiglipVisionModel(model_config).vision_model
|
1720 |
+
|
1721 |
+
return vision_model
|