File size: 10,498 Bytes
d93d2f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import os
import requests
import torch
from PIL import Image
import soundfile
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
model_path = './'
kwargs = {}
kwargs['torch_dtype'] = torch.bfloat16
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
print(processor.tokenizer)
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype='auto',
_attn_implementation='flash_attention_2',
).cuda()
print("model.config._attn_implementation:", model.config._attn_implementation)
generation_config = GenerationConfig.from_pretrained(model_path, 'generation_config.json')
user_prompt = '<|user|>'
assistant_prompt = '<|assistant|>'
prompt_suffix = '<|end|>'
#################################################### text-only ####################################################
prompt = f'{user_prompt}what is the answer for 1+1? Explain it.{prompt_suffix}{assistant_prompt}'
print(f'>>> Prompt\n{prompt}')
inputs = processor(prompt, images=None, return_tensors='pt').to('cuda:0')
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
generation_config=generation_config,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
#################################################### vision (single-turn) ####################################################
# single-image prompt
prompt = f'{user_prompt}<|image_1|>What is shown in this image?{prompt_suffix}{assistant_prompt}'
url = 'https://www.ilankelman.org/stopsigns/australia.jpg'
print(f'>>> Prompt\n{prompt}')
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=prompt, images=image, return_tensors='pt').to('cuda:0')
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
generation_config=generation_config,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
#################################################### vision (multi-turn) ####################################################
# chat template
chat = [
{'role': 'user', 'content': f'<|image_1|>What is shown in this image?'},
{
'role': 'assistant',
'content': "The image depicts a street scene with a prominent red stop sign in the foreground. The background showcases a building with traditional Chinese architecture, characterized by its red roof and ornate decorations. There are also several statues of lions, which are common in Chinese culture, positioned in front of the building. The street is lined with various shops and businesses, and there's a car passing by.",
},
{'role': 'user', 'content': 'What is so special about this image'},
]
url = 'https://www.ilankelman.org/stopsigns/australia.jpg'
image = Image.open(requests.get(url, stream=True).raw)
prompt = processor.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# need to remove last <|endoftext|> if it is there, which is used for training, not inference. For training, make sure to add <|endoftext|> in the end.
if prompt.endswith('<|endoftext|>'):
prompt = prompt.rstrip('<|endoftext|>')
print(f'>>> Prompt\n{prompt}')
inputs = processor(prompt, [image], return_tensors='pt').to('cuda:0')
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
generation_config=generation_config,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
########################### vision (multi-frame) ################################
images = []
placeholder = ''
for i in range(1, 5):
url = f'https://image.slidesharecdn.com/azureintroduction-191206101932/75/Introduction-to-Microsoft-Azure-Cloud-{i}-2048.jpg'
images.append(Image.open(requests.get(url, stream=True).raw))
placeholder += f'<|image_{i}|>'
messages = [
{'role': 'user', 'content': placeholder + 'Summarize the deck of slides.'},
]
prompt = processor.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
print(f'>>> Prompt\n{prompt}')
inputs = processor(prompt, images, return_tensors='pt').to('cuda:0')
generation_args = {
'max_new_tokens': 1000,
'temperature': 0.0,
'do_sample': False,
}
generate_ids = model.generate(
**inputs, **generation_args, generation_config=generation_config,
)
# remove input tokens
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(response)
# NOTE: Please prepare the audio file 'examples/what_is_the_traffic_sign_in_the_image.wav'
# and audio file 'examples/what_is_shown_in_this_image.wav' before running the following code
# Basically you can record your own voice for the question "What is the traffic sign in the image?" in "examples/what_is_the_traffic_sign_in_the_image.wav".
# And you can record your own voice for the question "What is shown in this image?" in "examples/what_is_shown_in_this_image.wav".
AUDIO_FILE_1 = 'examples/what_is_the_traffic_sign_in_the_image.wav'
AUDIO_FILE_2 = 'examples/what_is_shown_in_this_image.wav'
if not os.path.exists(AUDIO_FILE_1):
raise FileNotFoundError(f'Please prepare the audio file {AUDIO_FILE_1} before running the following code.')
########################## vision-speech ################################
prompt = f'{user_prompt}<|image_1|><|audio_1|>{prompt_suffix}{assistant_prompt}'
url = 'https://www.ilankelman.org/stopsigns/australia.jpg'
print(f'>>> Prompt\n{prompt}')
image = Image.open(requests.get(url, stream=True).raw)
audio = soundfile.read(AUDIO_FILE_1)
inputs = processor(text=prompt, images=[image], audios=[audio], return_tensors='pt').to('cuda:0')
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
generation_config=generation_config,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
########################## speech only ################################
speech_prompt = "Based on the attached audio, generate a comprehensive text transcription of the spoken content."
prompt = f'{user_prompt}<|audio_1|>{speech_prompt}{prompt_suffix}{assistant_prompt}'
print(f'>>> Prompt\n{prompt}')
audio = soundfile.read(AUDIO_FILE_1)
inputs = processor(text=prompt, audios=[audio], return_tensors='pt').to('cuda:0')
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
generation_config=generation_config,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
if not os.path.exists(AUDIO_FILE_2):
raise FileNotFoundError(f'Please prepare the audio file {AUDIO_FILE_2} before running the following code.')
########################### speech only (multi-turn) ################################
audio_1 = soundfile.read(AUDIO_FILE_2)
audio_2 = soundfile.read(AUDIO_FILE_1)
chat = [
{'role': 'user', 'content': f'<|audio_1|>Based on the attached audio, generate a comprehensive text transcription of the spoken content.'},
{
'role': 'assistant',
'content': "What is shown in this image.",
},
{'role': 'user', 'content': f'<|audio_2|>Based on the attached audio, generate a comprehensive text transcription of the spoken content.'},
]
prompt = processor.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# need to remove last <|endoftext|> if it is there, which is used for training, not inference. For training, make sure to add <|endoftext|> in the end.
if prompt.endswith('<|endoftext|>'):
prompt = prompt.rstrip('<|endoftext|>')
print(f'>>> Prompt\n{prompt}')
inputs = processor(text=prompt, audios=[audio_1, audio_2], return_tensors='pt').to('cuda:0')
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
generation_config=generation_config,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
#################################################### vision-speech (multi-turn) ####################################################
# chat template
audio_1 = soundfile.read(AUDIO_FILE_2)
audio_2 = soundfile.read(AUDIO_FILE_1)
chat = [
{'role': 'user', 'content': f'<|image_1|><|audio_1|>'},
{
'role': 'assistant',
'content': "The image depicts a street scene with a prominent red stop sign in the foreground. The background showcases a building with traditional Chinese architecture, characterized by its red roof and ornate decorations. There are also several statues of lions, which are common in Chinese culture, positioned in front of the building. The street is lined with various shops and businesses, and there's a car passing by.",
},
{'role': 'user', 'content': f'<|audio_2|>'},
]
url = 'https://www.ilankelman.org/stopsigns/australia.jpg'
image = Image.open(requests.get(url, stream=True).raw)
prompt = processor.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# need to remove last <|endoftext|> if it is there, which is used for training, not inference. For training, make sure to add <|endoftext|> in the end.
if prompt.endswith('<|endoftext|>'):
prompt = prompt.rstrip('<|endoftext|>')
print(f'>>> Prompt\n{prompt}')
inputs = processor(text=prompt, images=[image], audios=[audio_1, audio_2], return_tensors='pt').to('cuda:0')
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
generation_config=generation_config,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print(f'>>> Response\n{response}')
|