File size: 32,775 Bytes
d93d2f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 |
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Phi4MM
"""
import re
from typing import List, Optional, Tuple, Union
import math
from enum import Enum
import numpy as np
import scipy
import torch
import torchvision
from transformers import AutoFeatureExtractor, AutoImageProcessor
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_utils import (
ImageInput,
make_list_of_images,
valid_images,
)
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
from transformers.utils import TensorType, logging
from torch.nn.utils.rnn import pad_sequence
logger = logging.get_logger(__name__)
# Special tokens
_COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN = r'<\|image_\d+\|>' # For backward compatibility
_COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN = r'<\|audio_\d+\|>' # For backward compatibility
_IMAGE_SPECIAL_TOKEN = '<|endoftext10|>'
_AUDIO_SPECIAL_TOKEN = '<|endoftext11|>'
_IMAGE_SPECIAL_TOKEN_ID = 200010 # '<|endoftext10|>', or we can better name it (in `tokenizer_config.json`)
_AUDIO_SPECIAL_TOKEN_ID = 200011 # '<|endoftext11|>'
class InputMode(Enum):
LANGUAGE = 0
VISION = 1
SPEECH = 2
VISION_SPEECH = 3
class Phi4MMImageProcessor(BaseImageProcessor):
r"""
Constructs a Phi4MM image processor.
"""
model_input_names = ["input_image_embeds", "image_sizes", "image_attention_mask"]
def __init__(
self,
dynamic_hd,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.dynamic_hd = dynamic_hd
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=384, mask_size=27, use_thumbnail=True):
orig_width, orig_height = image.size
w_crop_num = math.ceil(orig_width/float(image_size))
h_crop_num = math.ceil(orig_height/float(image_size))
if w_crop_num * h_crop_num > max_num:
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = self.find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
else:
target_width = image_size * w_crop_num
target_height = image_size * h_crop_num
target_aspect_ratio = (w_crop_num, h_crop_num)
# Calculate the ratio
ratio_width = target_width / orig_width
ratio_height = target_height / orig_height
if ratio_width < ratio_height:
new_size = (target_width, int(orig_height * ratio_width))
padding_width = 0
padding_height = target_height - int(orig_height * ratio_width)
else:
new_size = (int(orig_width * ratio_height), target_height)
padding_width = target_width - int(orig_width * ratio_height)
padding_height = 0
attention_mask = torch.ones((int(mask_size*target_aspect_ratio[1]), int(mask_size*target_aspect_ratio[0])))
if padding_width >= 14:
attention_mask[:, -math.floor(padding_width/14):] = 0
if padding_height >= 14:
attention_mask[-math.floor(padding_height/14):,:] = 0
assert attention_mask.sum() > 0
if min(new_size[1], target_height) < 10 or min(new_size[0], target_width) < 10:
raise ValueError(f'the aspect ratio is very extreme {new_size}')
image = torchvision.transforms.functional.resize(image, [new_size[1], new_size[0]],)
resized_img = torchvision.transforms.functional.pad(image, [0, 0, padding_width, padding_height], fill=[255,255,255])
return resized_img, attention_mask
def pad_to_max_num_crops(self, images, max_crops=5):
"""
images: B x 3 x H x W, B<=max_crops
"""
B, _, H, W = images.shape
if B < max_crops:
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
images = torch.cat([images, pad], dim=0)
return images
def pad_mask_to_max_num_crops(self, masks, max_crops=5):
B, H, W = masks.shape
if B < max_crops:
pad = torch.ones(max_crops - B, H, W, dtype=masks.dtype, device=masks.device)
masks = torch.cat([masks, pad], dim=0)
return masks
def preprocess(
self,
images: ImageInput,
return_tensors: Optional[Union[str, TensorType]] = None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
"""
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# Basic settings.
img_processor = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)
),
])
dyhd_base_resolution = 448
# Dynamic HD
base_resolution = dyhd_base_resolution
images = [image.convert('RGB') for image in images]
# cover 384 and 448 resolution
mask_resolution = base_resolution // 14
elems, image_attention_masks = [], []
for im in images:
elem, attention_mask = self.dynamic_preprocess(im, max_num=self.dynamic_hd, image_size=base_resolution, mask_size=mask_resolution)
elems.append(elem)
image_attention_masks.append(attention_mask)
hd_images = [img_processor(im) for im in elems]
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(base_resolution, base_resolution), mode='bicubic',).to(im.dtype) for im in hd_images]
shapes = [[im.size(1), im.size(2)] for im in hd_images]
mask_shapes = [[mask.size(0), mask.size(1)] for mask in image_attention_masks]
global_attention_mask = [torch.ones((1, mask_resolution, mask_resolution)) for _ in hd_images]
hd_images_reshape = [im.reshape(1, 3,
h//base_resolution,
base_resolution,
w//base_resolution,
base_resolution
).permute(0,2,4,1,3,5).reshape(-1, 3, base_resolution, base_resolution).contiguous() for im, (h, w) in zip(hd_images, shapes)]
attention_masks_reshape = [mask.reshape(1,
h//mask_resolution,
mask_resolution,
w//mask_resolution,
mask_resolution
).permute(0,1,3,2,4).reshape(-1, mask_resolution, mask_resolution).contiguous() for mask, (h, w) in zip(image_attention_masks, mask_shapes)]
downsample_attention_masks = [mask[:,0::2,0::2].reshape(1,
h//mask_resolution,
w//mask_resolution,
mask_resolution//2+mask_resolution%2,
mask_resolution//2+mask_resolution%2
).permute(0,1,3,2,4) for mask, (h,w) in zip(attention_masks_reshape, mask_shapes)]
downsample_attention_masks = [mask.reshape(mask.size(1)*mask.size(2), mask.size(3)*mask.size(4))for mask in downsample_attention_masks]
num_img_tokens = [256 + 1 + int(mask.sum().item()) + int(mask[:,0].sum().item()) + 16 for mask in downsample_attention_masks]
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
hd_masks_reshape = [torch.cat([_global_mask] + [_mask], dim=0) for _global_mask, _mask in zip(global_attention_mask, attention_masks_reshape)]
max_crops = max([img.size(0) for img in hd_images_reshape])
image_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in hd_images_reshape]
image_transformed = torch.stack(image_transformed, dim=0)
mask_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in hd_masks_reshape]
mask_transformed = torch.stack(mask_transformed, dim=0)
returned_input_image_embeds = image_transformed
returned_image_sizes = torch.tensor(shapes, dtype=torch.long)
returned_image_attention_mask = mask_transformed
returned_num_img_tokens = num_img_tokens
data = {
"input_image_embeds": returned_input_image_embeds,
"image_sizes": returned_image_sizes,
"image_attention_mask": returned_image_attention_mask,
"num_img_tokens": returned_num_img_tokens,
}
return BatchFeature(data=data, tensor_type=return_tensors)
AudioInput = Tuple[Union[np.ndarray, torch.Tensor], int]
AudioInputs = List[AudioInput]
def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
"""Create a Mel filter-bank the same as SpeechLib FbankFC.
Args:
sample_rate (int): Sample rate in Hz. number > 0 [scalar]
n_fft (int): FFT size. int > 0 [scalar]
n_mel (int): Mel filter size. int > 0 [scalar]
fmin (float): lowest frequency (in Hz). If None use 0.0.
float >= 0 [scalar]
fmax: highest frequency (in Hz). If None use sample_rate / 2.
float >= 0 [scalar]
Returns
out (numpy.ndarray): Mel transform matrix
[shape=(n_mels, 1 + n_fft/2)]
"""
bank_width = int(n_fft // 2 + 1)
if fmax is None:
fmax = sample_rate / 2
if fmin is None:
fmin = 0
assert fmin >= 0, "fmin cannot be negtive"
assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"
def mel(f):
return 1127.0 * np.log(1.0 + f / 700.0)
def bin2mel(fft_bin):
return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))
def f2bin(f):
return int((f * n_fft / sample_rate) + 0.5)
# Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
klo = f2bin(fmin) + 1
khi = f2bin(fmax)
khi = max(khi, klo)
# Spec 2: SpeechLib uses trianges in Mel space
mlo = mel(fmin)
mhi = mel(fmax)
m_centers = np.linspace(mlo, mhi, n_mels + 2)
ms = (mhi - mlo) / (n_mels + 1)
matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
for m in range(0, n_mels):
left = m_centers[m]
center = m_centers[m + 1]
right = m_centers[m + 2]
for fft_bin in range(klo, khi):
mbin = bin2mel(fft_bin)
if left < mbin < right:
matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms
return matrix
class Phi4MMAudioFeatureExtractor(SequenceFeatureExtractor):
model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"]
def __init__(self, audio_compression_rate, audio_downsample_rate, audio_feat_stride, **kwargs):
feature_size = 80
sampling_rate = 16000
padding_value = 0.0
super().__init__(feature_size, sampling_rate, padding_value, **kwargs)
self.compression_rate = audio_compression_rate
self.qformer_compression_rate = audio_downsample_rate
self.feat_stride = audio_feat_stride
self._eightk_method = "fillzero"
self._mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=7690).T
self._hamming400 = np.hamming(400) # for 16k audio
self._hamming200 = np.hamming(200) # for 8k audio
def duration_to_frames(self, duration):
"""duration in s, estimated frames"""
frame_rate = 10
num_frames = duration * 1000 // frame_rate
return num_frames
def __call__(
self,
audios: List[AudioInput],
return_tensors: Optional[Union[str, TensorType]] = None,
):
# Ref: https://github.com/huggingface/transformers/blob/v4.47.0/src/transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py#L161
returned_input_audio_embeds = []
returned_audio_embed_sizes = []
audio_frames_list = []
for audio_data, sample_rate in audios:
audio_embeds = self._extract_features(audio_data, sample_rate)
audio_frames = len(audio_embeds) * self.feat_stride
audio_embed_size = self._compute_audio_embed_size(audio_frames)
returned_input_audio_embeds.append(torch.tensor(audio_embeds))
returned_audio_embed_sizes.append(torch.tensor(audio_embed_size).long())
audio_frames_list.append(audio_frames)
returned_input_audio_embeds = pad_sequence(
returned_input_audio_embeds, batch_first=True
)
returned_audio_embed_sizes = torch.stack(returned_audio_embed_sizes, dim=0)
audio_frames = torch.tensor(audio_frames_list)
returned_audio_attention_mask = torch.arange(0, audio_frames.max()).unsqueeze(0) < audio_frames.unsqueeze(1) if len(audios) > 1 else None
data = {
"input_audio_embeds": returned_input_audio_embeds,
"audio_embed_sizes": returned_audio_embed_sizes,
}
if returned_audio_attention_mask is not None:
data["audio_attention_mask"] = returned_audio_attention_mask
return BatchFeature(data=data, tensor_type=return_tensors)
def _extract_spectrogram(self, wav, fs):
"""Extract spectrogram features from waveform.
Args:
wav (1D array): waveform of the input
fs (int): sampling rate of the waveform, 16000 or 8000.
If fs=8000, the waveform will be resampled to 16000Hz.
Output:
log_fbank (2D array): a TxD matrix of log Mel filterbank features.
D=80, and T is the number of frames.
"""
if wav.ndim > 1:
wav = np.squeeze(wav)
# by default, we extract the mean if stereo
if len(wav.shape) == 2:
wav = wav.mean(1)
# Resample to 16000 or 8000 if needed
if fs > 16000:
wav = scipy.signal.resample_poly(wav, 1, fs // 16000)
fs = 16000
elif 8000 < fs < 16000:
wav = scipy.signal.resample_poly(wav, 1, fs // 8000)
fs = 8000
elif fs < 8000:
raise RuntimeError(f"Unsupported sample rate {fs}")
if fs == 8000:
if self._eightk_method == "resample":
# Input audio is 8 kHz. Convert to 16 kHz before feature
# extraction
wav = scipy.signal.resample_poly(wav, 2, 1)
fs = 16000
# Do nothing here for fillzero method
elif fs != 16000:
# Input audio is not a supported sample rate.
raise RuntimeError(f"Input data using an unsupported sample rate: {fs}")
preemphasis = 0.97
if fs == 8000:
n_fft = 256
win_length = 200
hop_length = 80
fft_window = self._hamming200
elif fs == 16000:
n_fft = 512
win_length = 400
hop_length = 160
fft_window = self._hamming400
# Spec 1: SpeechLib cut remaining sample insufficient for a hop
n_batch = (wav.shape[0] - win_length) // hop_length + 1
# Here we don't use stride_tricks since the input array may not satisfy
# memory layout requirement and we need writeable output
# Here we only use list of views before copy to desination
# so it is more efficient than broadcasting
y_frames = np.array(
[wav[_stride : _stride + win_length] for _stride in range(0, hop_length * n_batch, hop_length)],
dtype=np.float32,
)
# Spec 2: SpeechLib applies preemphasis within each batch
y_frames_prev = np.roll(y_frames, 1, axis=1)
y_frames_prev[:, 0] = y_frames_prev[:, 1]
y_frames = (y_frames - preemphasis * y_frames_prev) * 32768
S = np.fft.rfft(fft_window * y_frames, n=n_fft, axis=1).astype(np.complex64)
if fs == 8000:
# Need to pad the output to look like 16 kHz data but with zeros in
# the 4 to 8 kHz bins.
frames, bins = S.shape
padarray = np.zeros((frames, bins))
S = np.concatenate((S[:, 0:-1], padarray), axis=1) # Nyquist bin gets set to zero
spec = np.abs(S).astype(np.float32)
return spec
def _extract_features(self, wav, fs):
"""Extract log filterbank features from waveform.
Args:
wav (1D array): waveform of the input
fs (int): sampling rate of the waveform, 16000 or 8000.
If fs=8000, the waveform will be resampled to 16000Hz.
Output:
log_fbank (2D array): a TxD matrix of log Mel filterbank features.
D=80, and T is the number of frames.
"""
spec = self._extract_spectrogram(wav, fs)
spec_power = spec**2
fbank_power = np.clip(spec_power.dot(self._mel), 1.0, None)
log_fbank = np.log(fbank_power).astype(np.float32)
return log_fbank
def _compute_audio_embed_size(self, audio_frames):
integer = audio_frames // self.compression_rate
remainder = audio_frames % self.compression_rate
result = integer if remainder == 0 else integer + 1
integer = result // self.qformer_compression_rate
remainder = result % self.qformer_compression_rate
result = integer if remainder == 0 else integer + 1 # qformer compression
return result
class Phi4MMProcessor(ProcessorMixin):
r"""
Constructs a Phi4MM processor which raps an image processor, a audio processor, and a GPT tokenizer into a single processor.
[`Phi4MMProcessor`] offers all the functionalities of [`Phi4MMImageProcessor`] and [`GPT2Tokenizer`]. See the
[`~Phi4MMProcessor.__call__`] and [`~Phi4MMProcessor.decode`] for more information.
Args:
image_processor ([`Phi4MMImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`GPT2Tokenizer`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "audio_processor", "tokenizer"]
tokenizer_class = "GPT2TokenizerFast"
image_processor_class = "AutoImageProcessor" # Phi4MMImageProcessor will be registered later
audio_processor_class = "AutoFeatureExtractor" # Phi4MMAudioFeatureExtractor will be registered later
def __init__(self, image_processor, audio_processor, tokenizer):
self.image_processor = image_processor
self.audio_processor = audio_processor
self.tokenizer = tokenizer
def __call__(
self,
text: Union[TextInput, List[TextInput]],
images: Optional[ImageInput] = None,
audios: Optional[AudioInputs] = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forards the `text`
and `kwargs` arguments to GPT2Tokenizer's [`~GPT2Tokenizer.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
Phi4MMImageProcessor's [`~Phi4MMImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model.
- **input_image_embeds** -- Pixel values to be fed to a model.
- **image_sizes** -- List of tuples specifying the size of each image in `input_image_embeds`.
- **image_attention_mask** -- List of attention masks for each image in `input_image_embeds`.
- **input_audio_embeds** -- Audio embeddings to be fed to a model.
- **audio_embed_sizes** -- List of integers specifying the size of each audio in `input_audio_embeds`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
"""
image_inputs = self.image_processor(images, return_tensors=return_tensors) if images is not None else {}
audio_inputs = self.audio_processor(audios, return_tensors=return_tensors) if audios is not None else {}
inputs = self._convert_images_audios_text_to_inputs(
image_inputs,
audio_inputs,
text,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
)
# idenfity the input mode
if len(image_inputs) > 0 and len(audio_inputs) > 0:
input_mode = InputMode.VISION_SPEECH
elif len(image_inputs) > 0:
input_mode = InputMode.VISION
elif len(audio_inputs) > 0:
input_mode = InputMode.SPEECH
else:
input_mode = InputMode.LANGUAGE
inputs["input_mode"] = torch.tensor([input_mode.value], dtype=torch.long)
return inputs
@property
def special_image_token_id(self):
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
def get_special_image_token_id(self):
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
@property
def chat_template(self):
return self.tokenizer.chat_template
def _convert_images_audios_text_to_inputs(
self, images, audios, text, padding=False, truncation=None, max_length=None, return_tensors=None
):
# prepare image id to image input ids
if len(images) > 0:
input_image_embeds = images["input_image_embeds"]
image_sizes = images["image_sizes"]
image_attention_mask = images["image_attention_mask"]
num_img_tokens = images['num_img_tokens']
else:
input_image_embeds = torch.tensor([])
image_sizes = torch.tensor([])
image_attention_mask = torch.tensor([])
num_img_tokens = []
# prepare audio id to audio input ids
if len(audios) > 0:
input_audio_embeds = audios["input_audio_embeds"]
audio_embed_sizes = audios["audio_embed_sizes"]
audio_attention_mask = audios.get("audio_attention_mask", None)
else:
input_audio_embeds = torch.tensor([])
audio_embed_sizes = torch.tensor([])
audio_attention_mask = None
# Replace certain special tokens for compatibility
# Ref: https://stackoverflow.com/questions/11475885/python-replace-regex
if isinstance(text, str):
text = [text]
assert isinstance(text, list)
processed_text = [re.sub(_COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN, _IMAGE_SPECIAL_TOKEN, t) for t in text]
processed_text = [re.sub(_COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN, _AUDIO_SPECIAL_TOKEN, t) for t in processed_text]
input_ids_list = [self.tokenizer(t).input_ids for t in processed_text]
img_cnt, audio_cnt = 0, 0 # only needed for later assertion
image_token_count_iter = iter(num_img_tokens)
audio_embed_size_iter = iter(audio_embed_sizes.tolist())
new_input_ids_list = []
for input_ids in input_ids_list:
i = 0
while i < len(input_ids):
token_id = input_ids[i]
if token_id == _AUDIO_SPECIAL_TOKEN_ID:
token_count = next(audio_embed_size_iter)
audio_cnt += 1
elif token_id == _IMAGE_SPECIAL_TOKEN_ID:
token_count = next(image_token_count_iter)
img_cnt += 1
else:
i += 1
continue
tokens = [token_id] * token_count
input_ids = input_ids[:i] + tokens + input_ids[i + 1:]
i += token_count
input_ids = torch.tensor(input_ids, dtype=torch.long)
new_input_ids_list.append(input_ids)
lengths = torch.tensor([len(input_ids) for input_ids in new_input_ids_list])
max_len = lengths.max()
input_ids = input_ids.new_full((len(new_input_ids_list), max_len), self.tokenizer.pad_token_id)
# batched inference requires left padding
for i in range(len(new_input_ids_list)):
input_ids[i, max_len - len(new_input_ids_list[i]):] = new_input_ids_list[i]
# If the below assertion fails, it might be that input pure-text
# messages contain image/audio special tokens literally
# (<|endoftext10|>, <|endoftext11|>).
assert (
img_cnt == len(num_img_tokens)
), (
f"Number of image tokens in prompt_token_ids ({img_cnt}) "
f"does not match number of images ({len(num_img_tokens)})"
)
assert (
audio_cnt == len(audio_embed_sizes)
), (
f"Number of audio tokens in prompt_token_ids ({audio_cnt}) "
f"does not match number of audios ({len(audio_embed_sizes)})"
)
# prepare attention mask
seq_range = torch.arange(max_len - 1, -1, -1)
attention_mask = seq_range.unsqueeze(0) < lengths.unsqueeze(1)
# prepare batch feature
data = {
"input_ids": input_ids,
"input_image_embeds": input_image_embeds,
"image_sizes": image_sizes,
"image_attention_mask": image_attention_mask,
"input_audio_embeds": input_audio_embeds,
"audio_embed_sizes": audio_embed_sizes,
"audio_attention_mask": audio_attention_mask,
"attention_mask": attention_mask,
}
return BatchFeature(
data=data
)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
audio_processor_input_names = self.audio_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + audio_processor_input_names))
AutoImageProcessor.register("Phi4MMImageProcessor", Phi4MMImageProcessor)
AutoFeatureExtractor.register("Phi4MMAudioFeatureExtractor", Phi4MMAudioFeatureExtractor)
|