File size: 16,663 Bytes
d93d2f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
"""
finetune Phi-4-multimodal-instruct on an speech task
scipy==1.15.1
peft==0.13.2
backoff==2.2.1
transformers==4.46.1
accelerate==1.3.0
"""
import argparse
import json
import os
from pathlib import Path
import torch
import sacrebleu
from accelerate import Accelerator
from accelerate.utils import gather_object
from datasets import load_dataset
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
BatchFeature,
Trainer,
TrainingArguments,
StoppingCriteria,
StoppingCriteriaList,
)
INSTSRUCTION = {
"en_zh-CN": "Translate the audio to Mandarin.",
"en_id": "Translate the audio to Indonesian.",
"en_sl": "Translate the audio to Slovenian.",
}
TOKENIZER = {
"en_zh-CN": "zh",
"en_ja": "ja-mecab",
}
ANSWER_SUFFIX = "<|end|><|endoftext|>"
_IGNORE_INDEX = -100
_TRAIN_SIZE = 50000
_EVAL_SIZE = 200
class MultipleTokenBatchStoppingCriteria(StoppingCriteria):
"""Stopping criteria capable of receiving multiple stop-tokens and handling batched inputs."""
def __init__(self, stop_tokens: torch.LongTensor, batch_size: int = 1) -> None:
"""Initialize the multiple token batch stopping criteria.
Args:
stop_tokens: Stop-tokens.
batch_size: Batch size.
"""
self.stop_tokens = stop_tokens
self.max_stop_tokens = stop_tokens.shape[-1]
self.stop_tokens_idx = torch.zeros(batch_size, dtype=torch.long, device=stop_tokens.device)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
# Only gather the maximum number of inputs compatible with stop tokens
# and checks whether generated inputs are equal to `stop_tokens`
generated_inputs = torch.eq(input_ids[:, -self.max_stop_tokens :].unsqueeze(1), self.stop_tokens)
equal_generated_inputs = torch.all(generated_inputs, dim=2)
# Mark the position where a stop token has been produced for each input in the batch,
# but only if the corresponding entry is not already set
sequence_idx = torch.any(equal_generated_inputs, dim=1)
sequence_set_mask = self.stop_tokens_idx == 0
self.stop_tokens_idx[sequence_idx & sequence_set_mask] = input_ids.shape[-1]
return torch.all(self.stop_tokens_idx)
class CoVoSTDataset(Dataset):
def __init__(self, processor, data_dir, split,
lang="en_zh-CN", rank=0, world_size=1):
self.data = load_dataset("facebook/covost2",
lang,
data_dir=data_dir,
split=split,
trust_remote_code=True
)
self.training = "train" in split
self.processor = processor
self.instruction = INSTSRUCTION[lang]
if world_size > 1:
self.data = self.data.shard(world_size, rank)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
"""
{'client_id': '0013037a1d45cc33460806cc3f8ecee9d536c45639ba4cbbf1564f1c051f53ff3c9f89ef2f1bf04badf55b3a2e7654c086f903681a7b6299616cff6f67598eff',
'file': '{data_dir}/clips/common_voice_en_699711.mp3',
'audio': {'path': '{data_dir}/clips/common_voice_en_699711.mp3',
'array': array([-1.28056854e-09, -1.74622983e-09, -1.16415322e-10, ...,
3.92560651e-10, 6.62794264e-10, -3.89536581e-09]),
'sampling_rate': 16000},
'sentence': '"She\'ll be all right."',
'translation': '她会没事的。',
'id': 'common_voice_en_699711'}
"""
data = self.data[idx]
user_message = {
'role': 'user',
'content': '<|audio_1|>\n' + self.instruction,
}
prompt = self.processor.tokenizer.apply_chat_template(
[user_message], tokenize=False, add_generation_prompt=True
)
inputs = self.processor(text=prompt, audios=[(data["audio"]["array"], data["audio"]["sampling_rate"])], return_tensors='pt')
answer = f"{data['translation']}{ANSWER_SUFFIX}"
answer_ids = self.processor.tokenizer(answer, return_tensors='pt').input_ids
if self.training:
input_ids = torch.cat([inputs.input_ids, answer_ids], dim=1)
labels = torch.full_like(input_ids, _IGNORE_INDEX)
labels[:, -answer_ids.shape[1] :] = answer_ids
else:
input_ids = inputs.input_ids
labels = answer_ids
return {
'input_ids': input_ids,
'labels': labels,
'input_audio_embeds': inputs.input_audio_embeds,
'audio_embed_sizes': inputs.audio_embed_sizes,
}
def pad_sequence(sequences, padding_side='right', padding_value=0):
"""
Pad a list of sequences to the same length.
sequences: list of tensors in [seq_len, *] shape
"""
assert padding_side in ['right', 'left']
max_size = sequences[0].size()
trailing_dims = max_size[1:]
max_len = max(len(seq) for seq in sequences)
batch_size = len(sequences)
output = sequences[0].new_full((batch_size, max_len) + trailing_dims, padding_value)
for i, seq in enumerate(sequences):
length = seq.size(0)
if padding_side == 'right':
output.data[i, :length] = seq
else:
output.data[i, -length:] = seq
return output
def cat_with_pad(tensors, dim, padding_value=0):
"""
cat along dim, while pad to max for all other dims
"""
ndim = tensors[0].dim()
assert all(
t.dim() == ndim for t in tensors[1:]
), 'All tensors must have the same number of dimensions'
out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
out_size[dim] = sum(t.shape[dim] for t in tensors)
output = tensors[0].new_full(out_size, padding_value)
index = 0
for t in tensors:
# Create a slice list where every dimension except dim is full slice
slices = [slice(0, t.shape[d]) for d in range(ndim)]
# Update only the concat dimension slice
slices[dim] = slice(index, index + t.shape[dim])
output[slices] = t
index += t.shape[dim]
return output
def covost_collate_fn(batch):
input_ids_list = []
labels_list = []
input_audio_embeds_list = []
audio_embed_sizes_list = []
audio_attention_mask_list = []
for inputs in batch:
input_ids_list.append(inputs['input_ids'][0])
labels_list.append(inputs['labels'][0])
input_audio_embeds_list.append(inputs['input_audio_embeds'])
audio_embed_sizes_list.append(inputs['audio_embed_sizes'])
audio_attention_mask_list.append(
inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
)
try:
input_ids = pad_sequence(input_ids_list, padding_side='left', padding_value=0)
labels = pad_sequence(labels_list, padding_side='left', padding_value=0)
audio_attention_mask = (
pad_sequence(audio_attention_mask_list, padding_side='right', padding_value=False)
if len(audio_attention_mask_list) > 1
else None
)
except Exception as e:
print(e)
print(input_ids_list)
print(labels_list)
raise
attention_mask = (input_ids != 0).long()
input_audio_embeds = cat_with_pad(input_audio_embeds_list, dim=0)
audio_embed_sizes = torch.cat(audio_embed_sizes_list)
return BatchFeature(
{
'input_ids': input_ids,
'labels': labels,
'attention_mask': attention_mask,
'input_audio_embeds': input_audio_embeds,
'audio_embed_sizes': audio_embed_sizes,
'audio_attention_mask': audio_attention_mask,
'input_mode': 2, # speech mode
}
)
def create_model(model_name_or_path, use_flash_attention=False):
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16 if use_flash_attention else torch.float32,
_attn_implementation='flash_attention_2' if use_flash_attention else 'sdpa',
trust_remote_code=True,
).to('cuda')
return model
@torch.no_grad()
def evaluate(
model, processor, eval_dataset, save_path=None, disable_tqdm=False, eval_batch_size=1
):
rank = int(os.environ.get('RANK', 0))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
model.eval()
all_generated_texts = []
all_labels = []
eval_dataloader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=eval_batch_size,
collate_fn=covost_collate_fn,
shuffle=False,
drop_last=False,
num_workers=8,
prefetch_factor=2,
pin_memory=True,
)
stop_tokens = ["<|end|>", processor.tokenizer.eos_token]
stop_tokens_ids = processor.tokenizer(stop_tokens, add_special_tokens=False, padding="longest", return_tensors="pt")["input_ids"]
stop_tokens_ids = stop_tokens_ids.to(f'cuda:{local_rank}')
for inputs in tqdm(
eval_dataloader, disable=(rank != 0) or disable_tqdm, desc='running eval'
):
stopping_criteria=StoppingCriteriaList([MultipleTokenBatchStoppingCriteria(stop_tokens_ids, batch_size=inputs.input_ids.size(0))])
inputs = inputs.to(f'cuda:{local_rank}')
generated_ids = model.generate(
**inputs, eos_token_id=processor.tokenizer.eos_token_id, max_new_tokens=64,
stopping_criteria=stopping_criteria,
)
stop_tokens_idx = stopping_criteria[0].stop_tokens_idx.reshape(inputs.input_ids.size(0), -1)[:, 0]
stop_tokens_idx = torch.where(
stop_tokens_idx > 0,
stop_tokens_idx - stop_tokens_ids.shape[-1],
generated_ids.shape[-1],
)
generated_text = [
processor.decode(_pred_ids[inputs["input_ids"].shape[1] : _stop_tokens_idx], skip_special_tokens=True, clean_up_tokenization_spaces=False)
for _pred_ids, _stop_tokens_idx in zip(generated_ids, stop_tokens_idx)
]
all_generated_texts.extend(generated_text)
labels = [processor.decode(_label_ids[_label_ids != 0]).rstrip(ANSWER_SUFFIX) for _label_ids in inputs["labels"]]
all_labels.extend(labels)
all_generated_texts = gather_object(all_generated_texts)
all_labels = gather_object(all_labels)
if rank == 0:
assert len(all_generated_texts) == len(all_labels)
bleu = sacrebleu.corpus_bleu(all_generated_texts, [all_labels])
print(bleu)
if save_path:
with open(save_path, 'w') as f:
save_dict = {
'all_generated_texts': all_generated_texts,
'all_labels': all_labels,
'score': bleu.score,
}
json.dump(save_dict, f)
return bleu.score
return None
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_name_or_path',
type=str,
default='microsoft/Phi-4-multimodal-instruct',
help='Model name or path to load from',
)
parser.add_argument(
"--common_voice_dir",
type=str,
default="CommonVoice/EN",
help="Unzipped Common Voice Audio dataset directory, refer to https://commonvoice.mozilla.org/en/datasets, version 4.0",
)
parser.add_argument(
"--lang",
type=str,
default="en_sl",
help="Language pair for translation.",
)
parser.add_argument('--use_flash_attention', action='store_true', help='Use Flash Attention')
parser.add_argument('--output_dir', type=str, default='./output/', help='Output directory')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size')
parser.add_argument(
'--batch_size_per_gpu',
type=int,
default=32,
help='Batch size per GPU (adjust this to fit in GPU memory)',
)
parser.add_argument(
'--num_train_epochs', type=int, default=1, help='Number of training epochs'
)
parser.add_argument('--learning_rate', type=float, default=4.0e-5, help='Learning rate')
parser.add_argument('--wd', type=float, default=0.01, help='Weight decay')
parser.add_argument('--no-tqdm', dest='tqdm', action='store_false', help='Disable tqdm')
args = parser.parse_args()
accelerator = Accelerator()
with accelerator.local_main_process_first():
processor = AutoProcessor.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
)
model = create_model(
args.model_name_or_path,
use_flash_attention=args.use_flash_attention,
)
model.set_lora_adapter('speech')
rank = int(os.environ.get('RANK', 0))
world_size = int(os.environ.get('WORLD_SIZE', 1))
eval_dataset = CoVoSTDataset(processor,
data_dir=args.common_voice_dir,
split=f'test[:{_EVAL_SIZE}]',
lang=args.lang,
rank=rank,
world_size=world_size)
train_dataset = CoVoSTDataset(processor,
data_dir=args.common_voice_dir,
split=f'train[:{_TRAIN_SIZE}]',
lang=args.lang)
num_gpus = accelerator.num_processes
print(f'training on {num_gpus} GPUs')
assert (
args.batch_size % (num_gpus * args.batch_size_per_gpu) == 0
), 'Batch size must be divisible by the number of GPUs'
gradient_accumulation_steps = args.batch_size // (num_gpus * args.batch_size_per_gpu)
if args.use_flash_attention:
fp16 = False
bf16 = True
else:
fp16 = True
bf16 = False
# hard coded training args
training_args = TrainingArguments(
num_train_epochs=args.num_train_epochs,
per_device_train_batch_size=args.batch_size_per_gpu,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={'use_reentrant': False},
gradient_accumulation_steps=gradient_accumulation_steps,
optim='adamw_torch',
adam_beta1=0.9,
adam_beta2=0.95,
adam_epsilon=1e-7,
learning_rate=args.learning_rate,
weight_decay=args.wd,
max_grad_norm=1.0,
lr_scheduler_type='linear',
warmup_steps=50,
logging_steps=10,
output_dir=args.output_dir,
save_strategy='no',
save_total_limit=10,
save_only_model=True,
bf16=bf16,
fp16=fp16,
remove_unused_columns=False,
report_to='none',
deepspeed=None,
disable_tqdm=not args.tqdm,
dataloader_num_workers=4,
ddp_find_unused_parameters=True, # for unused SigLIP layers
)
# eval before fine-tuning
out_path = Path(training_args.output_dir)
out_path.mkdir(parents=True, exist_ok=True)
score = evaluate(
model,
processor,
eval_dataset,
save_path=out_path / 'eval_before.json',
disable_tqdm=not args.tqdm,
eval_batch_size=args.batch_size_per_gpu,
)
if accelerator.is_main_process:
print(f'BLEU Score before finetuning: {score}')
trainer = Trainer(
model=model,
args=training_args,
data_collator=covost_collate_fn,
train_dataset=train_dataset,
)
trainer.train()
trainer.save_model()
if accelerator.is_main_process:
processor.save_pretrained(training_args.output_dir)
accelerator.wait_for_everyone()
# eval after fine-tuning (load saved checkpoint)
# first try to clear GPU memory
del model
del trainer
__import__('gc').collect()
torch.cuda.empty_cache()
# reload the model for inference
model = AutoModelForCausalLM.from_pretrained(
training_args.output_dir,
torch_dtype=torch.bfloat16 if args.use_flash_attention else torch.float32,
trust_remote_code=True,
_attn_implementation='flash_attention_2' if args.use_flash_attention else 'sdpa',
).to('cuda')
score = evaluate(
model,
processor,
eval_dataset,
save_path=out_path / 'eval_after.json',
disable_tqdm=not args.tqdm,
eval_batch_size=args.batch_size_per_gpu,
)
if accelerator.is_main_process:
print(f'BLEU Score after finetuning: {score}')
if __name__ == '__main__':
main()
|