File size: 110,518 Bytes
d93d2f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#!/usr/bin/env python3
# activation_checkpointing.py
"""helper function for activation checkpointing"""
from typing import Union, Dict, Callable
from functools import partial
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
offload_wrapper,
CheckpointImpl,
)
# utils.py
"""cascade basic blocks"""
import math
import backoff
import random
import numpy as np
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch import Tensor
import torch.nn.functional as F
# conformer_encoder.py
"""ConformerEncoder Module"""
from typing import Optional, Tuple, List, Literal
import abc
import math
import numpy as np
import torch
from torch import nn, Tensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import CheckpointWrapper
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel
# activation_checkpointing.py
def validate_checkpointing_config(activation_checkpointing):
"""validate activation checkpointing configuration"""
if isinstance(activation_checkpointing, str):
assert activation_checkpointing in (
"",
"checkpoint",
"offload",
), "activation_checkpointing has to be a dict or a str in ('', 'checkpoint', 'offload')."
elif isinstance(activation_checkpointing, dict):
assert activation_checkpointing.get("module", "transformer") in (
"transformer",
"attention",
), "module in activation_checkpointing has to be in ('transformer', 'attention')."
else:
raise ValueError("activation_checkpointing has to be a str or dict.")
def embedding_checkpoint_wrapper(
activation_checkpointing: Union[str, Dict],
) -> Callable:
"""return encoder embedding activation checkpoint wrapper"""
validate_checkpointing_config(activation_checkpointing)
if isinstance(activation_checkpointing, str):
if activation_checkpointing:
if activation_checkpointing == "offload":
return offload_wrapper
return partial(checkpoint_wrapper)
return lambda x: x
if isinstance(activation_checkpointing, dict):
enabled = activation_checkpointing.get("embed", False)
if enabled:
offloading = activation_checkpointing.get("offload", False)
if offloading:
return offload_wrapper
impl = (
CheckpointImpl.REENTRANT
if activation_checkpointing.get("reentrant", False)
else CheckpointImpl.NO_REENTRANT
)
return partial(checkpoint_wrapper, checkpoint_impl=impl)
return lambda x: x
raise ValueError("Invalid activation_checkpointing config")
def encoder_checkpoint_wrapper(
activation_checkpointing: Union[str, Dict],
layer_cls: type,
idx: int = 0,
) -> Callable:
"""return encoder activation checkpoint wrapper"""
validate_checkpointing_config(activation_checkpointing)
if isinstance(activation_checkpointing, str):
if activation_checkpointing:
if activation_checkpointing == "offload":
return offload_wrapper
return partial(checkpoint_wrapper)
return lambda x: x
if isinstance(activation_checkpointing, dict):
target_layer_cls = activation_checkpointing.get("module", "transformer")
if target_layer_cls.lower() == "transformer":
target_layer_cls = (
"EncoderLayer",
"ConformerEncoderLayer",
)
elif target_layer_cls.lower() == "attention":
target_layer_cls = ("MultiHeadedAttention", "MultiHeadAttention")
checkpointing_interval = activation_checkpointing.get("interval", 1)
offloading = activation_checkpointing.get("offload", False)
impl = (
CheckpointImpl.REENTRANT
if activation_checkpointing.get("reentrant", True)
else CheckpointImpl.NO_REENTRANT
)
if idx % checkpointing_interval == 0 and layer_cls.__name__ in target_layer_cls:
if offloading:
return offload_wrapper
return partial(checkpoint_wrapper, checkpoint_impl=impl)
return lambda x: x
raise ValueError("Invalid activation_checkpointing config")
def attn_checkpointing(activation_checkpointing: Union[str, Dict], i) -> Union[str, Dict]:
"""return activation checkpointing config for attention layer"""
if isinstance(activation_checkpointing, str):
return ""
if isinstance(activation_checkpointing, dict):
target_layer_cls = activation_checkpointing.get("module", "transformer")
checkpointing_interval = activation_checkpointing.get("interval", 1)
if target_layer_cls == "attention" and i % checkpointing_interval == 0:
return activation_checkpointing
return ""
raise ValueError("Invalid activation_checkpointing config")
# utils.py
class Block(nn.Module):
"""Block abstract module"""
def __init__(self, input_size, output_size):
super().__init__()
self.input_size = input_size
self.output_size = output_size
def get_activation(name="relu"):
"""Select an activation function by name
Args:
name: str
activation function name,
one of ["relu", "gelu", "swish", "sigmoid"],
default "relu".
"""
name = name.lower()
if name == "relu":
return nn.ReLU(inplace=True)
if name == "gelu":
return nn.GELU()
if name == "swish":
return Swish()
if name == "sigmoid":
return torch.nn.Sigmoid()
return nn.Identity()
def adaptive_enc_mask(x_len, chunk_start_idx, left_window=0, right_window=0):
"""
The function is very important for Transformer Transducer Streaming mode
Args:
xs_len (int): sequence length
chunk_start_idx (list): first idx of each chunk, such as [0,18,36,48]. It also supports adaptive chunk size [0,10,15,45]
left_window (int): how many left chunks can be seen
right_window (int): how many right chunks can be seen. It is used for chunk overlap model.
Returns:
mask (torch.Tensor): a mask tensor for streaming model
Torch 1.0.1
tensor([[1., 1., 0., 0.],
[0., 1., 1., 0.],
[0., 0., 1., 1.]])
Torch 1.4.1
tensor([[True., True., False., False.],
[False., True., True., False.],
[False., False., True., True.]])
"""
chunk_start_idx = torch.Tensor(
chunk_start_idx
).long() # first idx of each chunk, such as [0,18,36,48].
start_pad = torch.nn.functional.pad(
chunk_start_idx, (1, 0)
) # append 0 to the beginning, so it becomes [0, 0, 18, 36, 48]
end_pad = torch.nn.functional.pad(
chunk_start_idx, (0, 1), value=x_len
) # append x_len to the end, so it becomes [0,18,36,48, x_len]
seq_range = torch.arange(0, x_len).unsqueeze(-1) # seq_range size: [x_len, 1]
idx = ((seq_range < end_pad) & (seq_range >= start_pad)).nonzero()[:, 1] # idx size: [x_len]
boundary = end_pad[idx] # boundary size: [x_len]
seq_range_expand = (
torch.arange(0, x_len).unsqueeze(0).expand(x_len, -1)
) # seq_range_expand size [x_len, x_len]
idx_left = idx - left_window
idx_left[idx_left < 0] = 0
boundary_left = start_pad[idx_left]
mask_left = seq_range_expand >= boundary_left.unsqueeze(-1)
idx_right = idx + right_window
idx_right[idx_right > len(chunk_start_idx)] = len(chunk_start_idx)
boundary_right = end_pad[idx_right]
mask_right = seq_range_expand < boundary_right.unsqueeze(-1)
return mask_left & mask_right
class Swish(nn.Module):
"""Implement Swish activation module.
From https://arxiv.org/pdf/2005.03191.pdf
"""
def __init__(self) -> None:
super().__init__()
self.act_fn = nn.Sigmoid()
def forward(self, x: Tensor) -> Tensor:
"""Apply Swish function
Args:
x: torch.Tensor
Input.
"""
return x * self.act_fn(x)
class GLU(nn.Module):
"""Implement Gated Linear Unit (GLU) module"""
def __init__(self, dim: int = -1, act_name: str = "sigmoid") -> None:
super().__init__()
self.dim = dim
self.act_name = act_name.lower()
if self.act_name == "relu":
self.act_fn = nn.ReLU(inplace=True)
elif self.act_name == "gelu":
self.act_fn = nn.GELU()
elif self.act_name == "swish":
self.act_fn = Swish()
elif self.act_name == "sigmoid":
self.act_fn = nn.Sigmoid()
else:
self.act_fn = nn.Identity()
def forward(self, x: Tensor) -> Tensor:
"""GLU forward
Apply Swish function on the first half of input matrices
with sigmoid of the second half.
Args:
x: torch.Tensor
Input.
"""
half_x, gate = x.chunk(2, dim=self.dim)
return half_x * self.act_fn(gate)
# TODO: Abdel, this can be improved using GLU module
class GLUPointWiseConv(nn.Module):
"""GLUPointWiseConv module
used for conformer architecture,
for more details see:
https://arxiv.org/pdf/2005.08100v1.pdf
Args:
input_dim: int
input channel size.
output_dim: int
output channel size.
kernel_size: int
kernel size
glu_type: str, optional
activation function one of
["sigmoid", "relu", "gelu"]
default "sigmoid".
bias_in_glu: bool, optional
use addtive bias in glu
causal: bool, optional
if set to True, padding is set to the half of
kernel size, ie, convolution can't see future frames.
default False.
"""
def __init__(
self, input_dim, output_dim, kernel_size, glu_type="sigmoid", bias_in_glu=True, causal=False
):
super().__init__()
self.glu_type = glu_type
self.output_dim = output_dim
self.bias_in_glu = bias_in_glu
if causal:
self.ext_pw_conv_1d = nn.Conv1d(
input_dim, output_dim * 2, kernel_size, 1, padding=(kernel_size - 1)
)
else:
self.ext_pw_conv_1d = nn.Conv1d(
input_dim, output_dim * 2, kernel_size, 1, padding=(kernel_size - 1) // 2
)
if glu_type == "sigmoid":
self.glu_act = nn.Sigmoid()
elif glu_type == "relu":
self.glu_act = nn.ReLU()
elif glu_type == "gelu":
self.glu_act = nn.GELU()
elif glu_type == "swish":
self.glu_act = Swish()
else:
raise ValueError(f"Unsupported activation type {self.glu_act}")
if bias_in_glu:
self.b1 = nn.Parameter(torch.zeros(1, output_dim, 1))
self.b2 = nn.Parameter(torch.zeros(1, output_dim, 1))
def forward(self, x):
"""
Args:
x: torch.Tensor
input tensor
"""
# to be consistent with GLULinear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
x = x.permute([0, 2, 1])
x = self.ext_pw_conv_1d(x)
if self.glu_type == "bilinear":
if self.bias_in_glu:
x = (x[:, 0 : self.output_dim, :] + self.b1) * (
x[:, self.output_dim : self.output_dim * 2, :] + self.b2
)
else:
x = (x[:, 0 : self.output_dim, :]) * (
x[:, self.output_dim : self.output_dim * 2, :]
)
else:
if self.bias_in_glu:
x = (x[:, 0 : self.output_dim, :] + self.b1) * self.glu_act(
x[:, self.output_dim : self.output_dim * 2, :] + self.b2
)
else:
x = (x[:, 0 : self.output_dim, :]) * self.glu_act(
x[:, self.output_dim : self.output_dim * 2, :]
)
x = x.permute([0, 2, 1])
return x
class DepthWiseSeperableConv1d(nn.Module):
"""DepthWiseSeperableConv1d module used in Convnet module
for the conformer, for more details see:
https://arxiv.org/pdf/2005.08100v1.pdf
Args:
input_dim: int
input channel size.
depthwise_seperable_out_channel: int
if set different to 0, the number of depthwise_seperable_out_channel
will be used as a channel_out of the second conv1d layer.
otherwise, it equal to 0, the second conv1d layer is skipped.
kernel_size: int
kernel_size
depthwise_multiplier: int
number of input_dim channels duplication. this value
will be used to compute the hidden channels of the Conv1D.
padding: int, optional
padding for the conv1d,
default: 0.
"""
def __init__(
self,
input_dim,
depthwise_seperable_out_channel,
kernel_size,
depthwise_multiplier,
padding=0,
):
super().__init__()
self.dw_conv = nn.Conv1d(
input_dim,
input_dim * depthwise_multiplier,
kernel_size,
1,
padding=padding,
groups=input_dim,
)
if depthwise_seperable_out_channel != 0:
self.pw_conv = nn.Conv1d(
input_dim * depthwise_multiplier, depthwise_seperable_out_channel, 1, 1, 0
)
else:
self.pw_conv = nn.Identity()
self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
def forward(self, x):
"""
Args:
x: torch.Tensor
input tensor
"""
x = self.dw_conv(x)
if self.depthwise_seperable_out_channel != 0:
x = self.pw_conv(x)
return x
class ConvModule(nn.Module):
"""ConvModule Module for the conformer block.
for more details see:
https://arxiv.org/pdf/2005.08100v1.pdf
Args:
input_dim: int
input channel size.
ext_pw_out_channel: int
if > 0, ext_pw_out_channel is a dim channel size
for the last pointwise conv after swish activation.
depthwise_seperable_out_channel: int
if set different to 0, the number of depthwise_seperable_out_channel
will be used as a channel_out of the second conv1d layer.
otherwise, it equal to 0, the second conv1d layer is skipped.
ext_pw_kernel_size: int
kernel size of the conv pointwise of the conformer.
kernel_size: int
kernel size.
depthwise_multiplier: int
number of input_dim channels duplication. this value
will be used to compute the hidden channels of the Conv1D.
dropout_rate: float
dropout rate.
causal: bool, optional
if set to True, convolution have no access
to future frames. default False.
batch_norm: bool, optional
if set to True, apply batchnorm before activation.
default False
chunk_se: int, optional
0 for offline SE.
1 for streaming SE, where mean is computed
by accumulated history until current chunk_se.
2 for streaming SE, where mean is computed
by only the current chunk.
chunk_size: int, optional
chunk size for cnn. default 18
activation: str, optional
activation function used in ConvModule,
default: "relu".
glu_type: str, optional
activation function used for the glu,
default: "sigmoid".
bias_in_glu: bool, optional
if set to True, use additive bias in the weight module
before GLU.
linear_glu_in_convm: bool, optional
if set to True, use GLULinear module,
otherwise, used GLUPointWiseConv module.
default to False.
export: bool, optional,
if set to True, padding is equal to 0. This is for inference,
or onnx export. Typically this is set by the export program or
the decoder program, and it isn't present in your config file.
default False
"""
def __init__(
self,
input_dim,
ext_pw_out_channel,
depthwise_seperable_out_channel,
ext_pw_kernel_size,
kernel_size,
depthwise_multiplier,
dropout_rate,
causal=False,
batch_norm=False,
chunk_se=0,
chunk_size=18,
activation="relu",
glu_type="sigmoid",
bias_in_glu=True,
linear_glu_in_convm=False,
export=False,
):
super().__init__()
self.layer_norm = nn.LayerNorm(input_dim)
self.input_dim = input_dim
self.ext_pw_out_channel = ext_pw_out_channel
self.ext_pw_kernel_size = ext_pw_kernel_size
self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
self.glu_type = glu_type
self.bias_in_glu = bias_in_glu
self.linear_glu_in_convm = linear_glu_in_convm
self.causal = causal
self._add_ext_pw_layer()
self.batch_norm = batch_norm
self.kernel_size = kernel_size
if batch_norm:
self.bn_layer = nn.BatchNorm1d(input_dim)
self.act = get_activation(activation)
self.dropout = nn.Dropout(dropout_rate)
self.export = export
if causal:
if export: # Inference only.
padding = 0 # A cache is concatenated to the left. No padding in the kernel.
else:
# Training only. Padding will be added symmetrically on both sides.
# After convolution, clip off kernel_size-1 points on the right.
padding = kernel_size - 1
else:
padding = (kernel_size - 1) // 2
self.dw_sep_conv_1d = DepthWiseSeperableConv1d(
input_dim,
depthwise_seperable_out_channel,
kernel_size,
depthwise_multiplier,
padding=padding,
)
if depthwise_seperable_out_channel != 0:
if input_dim != depthwise_seperable_out_channel:
self.ln2 = nn.Linear(depthwise_seperable_out_channel, input_dim)
else:
if depthwise_multiplier != 1:
self.ln2 = nn.Linear(input_dim * depthwise_multiplier, input_dim)
def _add_ext_pw_layer(self):
"""
This function is an extension of __init__ function
and dedicated to the convolution module creation
of the conformer.
"""
self.ln1 = self.glu = self.bn_layer = self.ext_pw_conv_1d = nn.Identity() # jit hacks.
self.squeeze_excitation = nn.Identity() # jit.
self.apply_ln1 = self.fix_len1 = False # jit.
if self.ext_pw_out_channel != 0:
if self.causal:
self.ext_pw_conv_1d = nn.Conv1d(
self.input_dim,
self.ext_pw_out_channel,
self.ext_pw_kernel_size,
1,
padding=(self.ext_pw_kernel_size - 1),
)
if self.ext_pw_kernel_size > 1:
self.fix_len1 = True
else:
self.fix_len1 = False
else:
self.ext_pw_conv_1d = nn.Conv1d(
self.input_dim,
self.ext_pw_out_channel,
self.ext_pw_kernel_size,
1,
padding=(self.ext_pw_kernel_size - 1) // 2,
)
self.fix_len1 = False
if self.linear_glu_in_convm:
self.glu = GLULinear(
self.input_dim, self.ext_pw_out_channel, self.glu_type, self.bias_in_glu
)
else:
self.glu = GLUPointWiseConv(
self.input_dim,
self.ext_pw_out_channel,
self.ext_pw_kernel_size,
self.glu_type,
self.bias_in_glu,
self.causal,
)
if self.input_dim != self.ext_pw_out_channel:
self.apply_ln1 = True
self.ln1 = nn.Linear(self.ext_pw_out_channel, self.input_dim)
else:
self.apply_ln1 = False
else:
self.pw_conv_simplify_w = torch.nn.Parameter(torch.ones(3))
self.pw_conv_simplify_b = torch.nn.Parameter(torch.zeros(3))
def forward(self, x):
"""ConvModule Forward.
Args:
x: torch.Tensor
input tensor.
"""
x = self.layer_norm(x)
if self.ext_pw_out_channel != 0:
x = self.glu(x)
if self.causal and self.ext_pw_kernel_size > 1:
x = x[:, : -(self.ext_pw_kernel_size - 1), :]
if self.apply_ln1:
x = self.ln1(x)
else:
x_0 = x * self.pw_conv_simplify_w[0] + self.pw_conv_simplify_b[0]
x_1 = x * self.pw_conv_simplify_w[1] + self.pw_conv_simplify_b[1]
x = x_0 + x_1
x = x.permute([0, 2, 1])
x = self.dw_sep_conv_1d(x)
if self.causal and self.kernel_size > 1:
x = x[:, :, : -(self.kernel_size - 1)]
if hasattr(self, "ln2"):
x = x.permute([0, 2, 1])
x = self.ln2(x)
x = x.permute([0, 2, 1])
if self.batch_norm:
x = self.bn_layer(x)
x = self.act(x)
if self.ext_pw_out_channel != 0:
x = self.ext_pw_conv_1d(x)
if self.fix_len1:
x = x[:, :, : -(self.ext_pw_kernel_size - 1)]
if self.apply_ln1:
x = x.permute([0, 2, 1])
x = self.ln1(x)
x = x.permute([0, 2, 1])
x = x.permute([0, 2, 1])
else:
x = x.unsqueeze(1).permute([0, 1, 3, 2])
x = x * self.pw_conv_simplify_w[2] + self.pw_conv_simplify_b[2]
x = x.squeeze(1)
x = self.dropout(x)
return x
class GLULinear(nn.Module):
"""Linear + GLU module
Args:
input_dim: int
input size
output_dim: int
output size.
glu_type:
activation function name used in glu module.
default "sigmoid" (swish function).
bias_in_glu: bool, optional
If True, the addtive bias is added. Default False.
"""
def __init__(
self,
input_dim,
output_dim,
glu_type="sigmoid",
bias_in_glu=True,
):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim * 2, bias_in_glu)
self.glu_act = GLU(-1, glu_type)
def forward(self, x):
"""GLULinear forward
Args:
x: torch.Tensor
inpute tensor.
"""
x = self.linear(x)
return self.glu_act(x)
class FeedForward(nn.Module):
"""FeedForward Module.
For more details see Conformer paper:
https://arxiv.org/pdf/2005.08100.pdf
Args:
d_model: int
input size.
d_inner: int
output size.
dropout_rate: float,
dropout rate.
activation: str,
activation function name,
one of ["relu", "swish", "sigmoid"],
sigmoid activation is only used with "glu_in_fnn=True",
default "sigmoid".
bias_in_glu: bool, optional
"""
def __init__(
self,
d_model,
d_inner,
dropout_rate,
activation="sigmoid",
bias_in_glu=True,
):
super().__init__()
self.d_model = d_model
self.d_inner = d_inner
self.layer_norm = nn.LayerNorm(d_model)
module = GLULinear(d_model, d_inner, activation, bias_in_glu)
self.net = nn.Sequential(
module,
nn.Dropout(dropout_rate),
nn.Linear(d_inner, d_model),
nn.Dropout(dropout_rate),
)
def forward(self, x):
"""FeedForward forward function.
Args:
x: torch.Tensor
input tensor.
"""
out = self.net(self.layer_norm(x))
return out
#### positional encoding starts here
def _pre_hook(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
"""Perform pre-hook in load_state_dict for backward compatibility.
Note:
We saved self.pe until v.0.5.2 but we have omitted it later.
Therefore, we remove the item "pe" from `state_dict` for backward compatibility.
"""
k = prefix + "pe"
if k in state_dict:
state_dict.pop(k)
class T5RelativeAttentionLogitBias(nn.Module):
"""
This module implements the relative position bias described in Section 2.1 of
the T5 paper: https://arxiv.org/pdf/1910.10683.pdf
The Huggingface implementation is used as a reference
https://github.com/huggingface/transformers/blob/v4.30.0/src/transformers/models/t5/modeling_t5.py#L435
Modifies attention as Q*K^T + B, where B is a learned scalar bias based on relative position
of the query and key. It is HxNxN, where H is the number of heads, N is the sequence length.
I've made these modifications to the original T5 bias:
- Skipping of the bucketing step. Original T5 bias converted rel position distances into
logarithmically increasing buckets. This is supposed to help with length generalization.
- I just directly use rel position index as bias values, as we don't need length
generalization (40s max is good enough for ASR encoder), and it keeps ONNX export simple.
- I've also extended it so that biases can be asymmetric, the default implementation treats
L->R and R->L the same. Asymmetric was found to yield better results in my experiments.
Args:
num_heads: int
Number of attention heads
num_buckets: int
Number of buckets to use for relative attention bias. This is the size of the learnable
bias parameter. Bucketing is not yet supported, so this defaults to -1 which means
no bucketing is used (max_distance determines size of bias param).
max_distance: int
Maximum distance to use for relative attention bias. With num_buckets=-1, this directly
controls the max size of the bias parameter. When num_buckets > 0 is supported, this
will control the maximum distance for logarithmic bucketing after which all positions
are in the same bucket.
symmetric: bool
Whether to use symmetric or asymmetric biases. symmetric=False uses 2x number of bias
params to distinguish L->R from R->L. This was found to be better for the encoder.
"""
def __init__(self, num_heads, num_buckets=-1, max_distance=1000, symmetric=False):
super().__init__()
self.num_heads = num_heads
self.num_buckets = num_buckets
self.max_distance = max_distance
self.symmetric = symmetric
self._skip_bucketing = self.num_buckets < 0
if self._skip_bucketing:
self.num_buckets = max_distance
else:
raise NotImplementedError("T5 attention bias with bucketed positions is not yet tested")
if not self.symmetric:
self.num_buckets *= 2
self.bias_values = nn.Embedding(self.num_buckets, self.num_heads)
def forward(self, x):
# instantiate bias compatible with shape of x
maxpos = x.size(1)
context_position = torch.arange(maxpos, device=x.device, dtype=torch.long)[:, None]
memory_position = torch.arange(maxpos, device=x.device, dtype=torch.long)[None, :]
relative_position = memory_position - context_position
# clipping to a maximum distance using ops that play well with ONNX export
relative_position = relative_position.masked_fill(
relative_position < -self.max_distance, -self.max_distance
)
relative_position = relative_position.masked_fill(
relative_position > self.max_distance - 1, self.max_distance - 1
)
# mapping from relative position to index in the bias parameter
if self._skip_bucketing:
bias_idx = relative_position
else:
bias_idx = self._bucket_relative_position(relative_position)
if self.symmetric:
bias_idx = bias_idx.abs()
else:
bias_idx += self.num_buckets // 2
t5_rel_att_bias = self.bias_values(bias_idx) # [L, L, H]
t5_rel_att_bias = t5_rel_att_bias.permute(2, 0, 1).unsqueeze(0) # [1, H, L, L]
return t5_rel_att_bias
def _bucket_relative_position(self, relative_position):
# this is a placeholder (isn't tested, likely buggy) using HuggingFace implem as a reference
# this also needs to be extended to support asymmetric +/- ve positions
relative_buckets = 0
if not self.causal:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(self.max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
class AbsolutePositionalEncoding(nn.Module):
"""Absolute Positional encoding module.
This module implement Absolute sinusoidal positional encoding
from: https://arxiv.org/pdf/1706.03762.pdf
Args:
d_model: int
Input embedding size.
dropout_rate: float
dropout rate
max_len: int, optional
Maximum input length sequence, Default 5000
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
"""Construct an PositionalEncoding object."""
super().__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
self._register_load_state_dict_pre_hook(_pre_hook)
def extend_pe(self, x):
"""Reset the positional encodings.
Args:
x: torch.Tensor
"""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor):
"""Add positional encoding.
Args:
x: torch.Tensor
Input tensor. shape is (batch, time, ...)
Returns:
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
"""
self.extend_pe(x)
x = x * self.xscale + self.pe[:, : x.size(1)]
return self.dropout(x)
#### forward embedding layers starts here
@backoff.on_exception(backoff.expo, Exception, max_tries=10)
def np_loadtxt_with_retry(filepath):
"""np.loadtxt with retry
Args:
filepath: str
file path to the numpy array.
"""
result = np.loadtxt(filepath, dtype="f")
return result
class MeanVarianceNormLayer(nn.Module):
"""Mean/variance normalization layer.
Will substract mean and multiply input by inverted standard deviation.
Typically used as a very first layer in a model.
Args:
input_size: int
layer input size.
"""
def __init__(self, input_size):
super().__init__()
self.input_size = input_size
self.register_buffer("global_mean", torch.zeros(input_size))
self.register_buffer("global_invstd", torch.ones(input_size))
self.global_mean: Optional[Tensor]
self.global_invstd: Optional[Tensor]
def forward(self, input_: Tensor) -> Tensor:
"""MeanVarianceNormLayer Forward
Args:
input_: torch.Tensor
input tensor.
"""
return (input_ - self.global_mean) * self.global_invstd
def load_mean_invstd(self, mean_file, invstd_file, cuside_features=False):
"""Load feature mean and variance used for normalization.
Args:
mean_file: str
path to the feature mean statistics file.
invstd_file: str
path to the features inverted standard deviation
statistics file.
cuside_features: bool
Boolean that indicates CUSIDE is being used.
The statistics of CUSIDE features are copied
from the normal features
"""
self.global_mean.data = torch.from_numpy(np_loadtxt_with_retry(mean_file))
self.global_invstd.data = torch.from_numpy(np_loadtxt_with_retry(invstd_file))
if cuside_features:
self.global_mean.data = torch.cat((self.global_mean.data, self.global_mean.data), 0)
self.global_invstd.data = torch.cat(
(self.global_invstd.data, self.global_invstd.data), 0
)
class CausalConv1D(nn.Conv1d):
"""
A causal version of nn.Conv1d where each step would have limited access to locations on its right or left
All arguments are the same as nn.Conv1d except padding.
If padding is set None, then paddings are set automatically to make it a causal convolution where each location would not see any steps on its right.
If padding is set as a list (size of 2), then padding[0] would be used as left padding and padding[1] as right padding.
It would make it possible to control the number of steps to be accessible on the right and left.
This mode is not supported when stride > 1. padding[0]+padding[1] should be equal to (kernel_size - 1).
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: Union[str, int] = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = "zeros",
device=None,
dtype=None,
) -> None:
self.cache_drop_size = None
if padding is None:
self._left_padding = kernel_size - 1
self._right_padding = stride - 1
else:
if stride != 1 and padding != kernel_size - 1:
raise ValueError("No striding allowed for non-symmetric convolutions!")
if isinstance(padding, int):
self._left_padding = padding
self._right_padding = padding
elif (
isinstance(padding, list)
and len(padding) == 2
and padding[0] + padding[1] == kernel_size - 1
):
self._left_padding = padding[0]
self._right_padding = padding[1]
else:
raise ValueError(f"Invalid padding param: {padding}!")
self._max_cache_len = self._left_padding
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode=padding_mode,
device=device,
dtype=dtype,
)
def update_cache(self, x, cache=None):
if cache is None:
new_x = F.pad(x, pad=(self._left_padding, self._right_padding))
next_cache = cache
else:
new_x = F.pad(x, pad=(0, self._right_padding))
new_x = torch.cat([cache, new_x], dim=-1)
if self.cache_drop_size > 0:
next_cache = new_x[:, :, : -self.cache_drop_size]
else:
next_cache = new_x
next_cache = next_cache[:, :, -cache.size(-1) :]
return new_x, next_cache
def forward(self, x, cache=None):
x, cache = self.update_cache(x, cache=cache)
x = super().forward(x)
if cache is None:
return x
else:
return x, cache
class CausalConv2D(nn.Conv2d):
"""
A causal version of nn.Conv2d where each location in the 2D matrix would have no access to locations on its right or down
All arguments are the same as nn.Conv2d except padding which should be set as None
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: Union[str, int] = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = "zeros",
device=None,
dtype=None,
) -> None:
if padding is not None:
raise ValueError("Argument padding should be set to None for CausalConv2D.")
self._left_padding = kernel_size - 1
self._right_padding = stride - 1
padding = 0
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode,
device,
dtype,
)
def forward(
self,
x,
):
if self.training:
x = F.pad(
x,
pad=(
self._left_padding,
self._right_padding,
self._left_padding,
self._right_padding,
),
)
else:
x = F.pad(
x,
pad=(self._left_padding, self._right_padding, 0, 0),
)
x = super().forward(x)
return x
class NemoConvSubsampling(torch.nn.Module):
"""Convlutional subsampling module, taken from NeMo ASR
(https://github.com/NVIDIA/NeMo/blob/b367413645d5c72db3c2c96e46e95a34501479cf/nemo/collections/asr/parts/submodules/subsampling.py)
Striding Subsampling: "Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for
Speech Recognition" by Linhao Dong et al. (https://ieeexplore.ieee.org/document/8462506)
Compared with the EncoderConv2D (`input_layer: custom`), this is a much simplified approach,
and uses no LayerNorm and far fewer Conv2Ds. Moreover, depthwise convolutions are used to reduce
FLOPs, but the first layer is kept as a regular convolution so as not to degrade accuracy.
`Striding` and `dw_striding` are the same except that the latter uses depthwise convolutions
after the first layer, whereas the former does not.
Args:
subsampling_factor (int): Time reduction factor
feat_in (int): size of the input features
feat_out (int): size of the output features
subsampling (str): The subsampling technique, choose from
{"striding", "dw-striding", "striding_conv1d", "dw_striding_conv1d"}
conv_channels (int): Number of channels for the convolution layers, default is 256.
subsampling_conv_chunking_factor (int): Input chunking factor which can be -1 (no chunking)
1 (auto) or a power of 2. Default is 1
activation (Module): activation function, default is nn.ReLU()
is_causal (bool): whether to use causal Conv1/2D, where each step will have limited access
to locations on its right or left
"""
def __init__(
self,
feat_in,
feat_out,
subsampling_factor=4,
subsampling="dw_striding",
conv_channels=256,
subsampling_conv_chunking_factor=1,
activation=nn.ReLU(),
is_causal=False,
):
super().__init__()
self._subsampling = subsampling
self._conv_channels = conv_channels
self._feat_in = feat_in
self._feat_out = feat_out
if subsampling_factor % 2 != 0:
raise ValueError("Sampling factor should be a multiply of 2!")
self._sampling_num = int(math.log(subsampling_factor, 2))
self.subsampling_factor = subsampling_factor
self.is_causal = is_causal
self.subsampling_causal_cond = subsampling in ("dw_striding", "striding", "striding_conv1d")
if (
subsampling_conv_chunking_factor != -1
and subsampling_conv_chunking_factor != 1
and subsampling_conv_chunking_factor % 2 != 0
):
raise ValueError("subsampling_conv_chunking_factor should be -1, 1, or a power of 2")
self.subsampling_conv_chunking_factor = subsampling_conv_chunking_factor
in_channels = 1
layers = []
if subsampling == "dw_striding":
self._stride = 2
self._kernel_size = 3
self._ceil_mode = False
if self.is_causal:
self._left_padding = self._kernel_size - 1
self._right_padding = self._stride - 1
self._max_cache_len = subsampling_factor + 1
else:
self._left_padding = (self._kernel_size - 1) // 2
self._right_padding = (self._kernel_size - 1) // 2
self._max_cache_len = 0
# Layer 1
if self.is_causal:
layers.append(
CausalConv2D(
in_channels=in_channels,
out_channels=conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=None,
)
)
else:
layers.append(
torch.nn.Conv2d(
in_channels=in_channels,
out_channels=conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
)
)
in_channels = conv_channels
layers.append(activation)
for i in range(self._sampling_num - 1):
if self.is_causal:
layers.append(
CausalConv2D(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=None,
groups=in_channels,
)
)
else:
layers.append(
torch.nn.Conv2d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
groups=in_channels,
)
)
layers.append(
torch.nn.Conv2d(
in_channels=in_channels,
out_channels=conv_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1,
)
)
layers.append(activation)
in_channels = conv_channels
elif subsampling == "striding":
self._stride = 2
self._kernel_size = 3
self._ceil_mode = False
if self.is_causal:
self._left_padding = self._kernel_size - 1
self._right_padding = self._stride - 1
self._max_cache_len = subsampling_factor + 1
else:
self._left_padding = (self._kernel_size - 1) // 2
self._right_padding = (self._kernel_size - 1) // 2
self._max_cache_len = 0
for i in range(self._sampling_num):
if self.is_causal:
layers.append(
CausalConv2D(
in_channels=in_channels,
out_channels=conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=None,
)
)
else:
layers.append(
torch.nn.Conv2d(
in_channels=in_channels,
out_channels=conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
)
)
layers.append(activation)
in_channels = conv_channels
elif subsampling == "striding_conv1d":
in_channels = feat_in
self._stride = 2
self._kernel_size = 5
self._ceil_mode = False
if self.is_causal:
self._left_padding = self._kernel_size - 1
self._right_padding = self._stride - 1
self._max_cache_len = subsampling_factor + 1
else:
self._left_padding = (self._kernel_size - 1) // 2
self._right_padding = (self._kernel_size - 1) // 2
self._max_cache_len = 0
for i in range(self._sampling_num):
if self.is_causal:
layers.append(
CausalConv1D(
in_channels=in_channels,
out_channels=feat_out if self._sampling_num == i + 1 else conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=None,
)
)
else:
layers.append(
torch.nn.Conv1d(
in_channels=in_channels,
out_channels=feat_out if self._sampling_num == i + 1 else conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
)
)
layers.append(activation)
in_channels = conv_channels
elif subsampling == "dw_striding_conv1d":
in_channels = feat_in
self._stride = 2
self._kernel_size = 5
self._ceil_mode = False
self._left_padding = (self._kernel_size - 1) // 2
self._right_padding = (self._kernel_size - 1) // 2
# Layer 1
layers.extend(
[
torch.nn.Conv1d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
groups=in_channels,
),
torch.nn.Conv1d(
in_channels=in_channels,
out_channels=feat_out if self._sampling_num == 1 else conv_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1,
),
]
)
in_channels = conv_channels
layers.append(activation)
for i in range(self._sampling_num - 1):
layers.extend(
[
torch.nn.Conv1d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
groups=in_channels,
),
torch.nn.Conv1d(
in_channels=in_channels,
out_channels=feat_out if self._sampling_num == i + 2 else conv_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1,
),
]
)
layers.append(activation)
in_channels = conv_channels
else:
raise ValueError(f"Not valid sub-sampling: {subsampling}!")
if subsampling in ["dw_striding", "striding"]:
in_length = torch.tensor(feat_in, dtype=torch.float)
out_length = calc_length(
lengths=in_length,
all_paddings=self._left_padding + self._right_padding,
kernel_size=self._kernel_size,
stride=self._stride,
ceil_mode=self._ceil_mode,
repeat_num=self._sampling_num,
)
self.out = torch.nn.Linear(conv_channels * int(out_length), feat_out)
self.conv2d_subsampling = True
elif subsampling in ["striding_conv1d", "dw_striding_conv1d"]:
self.out = None
self.conv2d_subsampling = False
else:
raise ValueError(f"Not valid sub-sampling: {subsampling}!")
self.conv = torch.nn.Sequential(*layers)
def get_sampling_frames(self):
return [1, self.subsampling_factor]
def get_streaming_cache_size(self):
return [0, self.subsampling_factor + 1]
def forward(self, x, mask):
"""
Forward method for NeMo subsampling.
Args:
x[Batch, Time, Filters]: torch.Tensor
input tensor
x_mask: torch.Tensor
input mask
Returns:
x: torch.Tensor
Resulting tensor from subsampling (B, T // time_reduction_factor, feat_out)
pad_mask: torch.Tensor
tensor of padded hidden state sequences (B, 1, T // time_reduction_factor)
"""
# Unsqueeze Channel Axis
if self.conv2d_subsampling:
x = x.unsqueeze(1)
# Transpose to Channel First mode
else:
x = x.transpose(1, 2)
# split inputs if chunking_factor is set
if self.subsampling_conv_chunking_factor != -1 and self.conv2d_subsampling:
if self.subsampling_conv_chunking_factor == 1:
# if subsampling_conv_chunking_factor is 1, we split only if needed
# avoiding a bug / feature limiting indexing of tensors to 2**31
# see https://github.com/pytorch/pytorch/issues/80020
x_ceil = 2**31 / self._conv_channels * self._stride * self._stride
if torch.numel(x) > x_ceil:
need_to_split = True
else:
need_to_split = False
else:
# if subsampling_conv_chunking_factor > 1 we always split
need_to_split = True
if need_to_split:
x, success = self.conv_split_by_batch(x)
if not success: # if unable to split by batch, try by channel
if self._subsampling == "dw_striding":
x = self.conv_split_by_channel(x)
else:
x = self.conv(x) # try anyway
else:
x = self.conv(x)
else:
x = self.conv(x)
# Flatten Channel and Frequency Axes
if self.conv2d_subsampling:
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).reshape(b, t, -1))
# Transpose to Channel Last mode
else:
x = x.transpose(1, 2)
if mask is None:
return x, None
max_audio_length = x.shape[1]
feature_lens = mask.sum(1)
padding_length = torch.ceil(feature_lens / self.subsampling_factor)
if self.is_causal and self.subsampling_causal_cond:
feature_lens_remainder = feature_lens % self.subsampling_factor
padding_length[feature_lens_remainder != 1] += 1
pad_mask = (
torch.arange(0, max_audio_length, device=x.device).expand(padding_length.size(0), -1)
< padding_length.unsqueeze(1)
)
return x, pad_mask.unsqueeze(1)
def reset_parameters(self):
# initialize weights
if self._subsampling == "dw_striding":
with torch.no_grad():
# init conv
scale = 1.0 / self._kernel_size
dw_max = (self._kernel_size**2) ** -0.5
pw_max = self._conv_channels**-0.5
torch.nn.init.uniform_(self.conv[0].weight, -scale, scale)
torch.nn.init.uniform_(self.conv[0].bias, -scale, scale)
for idx in range(2, len(self.conv), 3):
torch.nn.init.uniform_(self.conv[idx].weight, -dw_max, dw_max)
torch.nn.init.uniform_(self.conv[idx].bias, -dw_max, dw_max)
torch.nn.init.uniform_(self.conv[idx + 1].weight, -pw_max, pw_max)
torch.nn.init.uniform_(self.conv[idx + 1].bias, -pw_max, pw_max)
# init fc (80 * 64 = 5120 from https://github.com/kssteven418/Squeezeformer/blob/13c97d6cf92f2844d2cb3142b4c5bfa9ad1a8951/src/models/conformer_encoder.py#L487
fc_scale = (self._feat_out * self._feat_in / self._sampling_num) ** -0.5
torch.nn.init.uniform_(self.out.weight, -fc_scale, fc_scale)
torch.nn.init.uniform_(self.out.bias, -fc_scale, fc_scale)
def conv_split_by_batch(self, x):
"""Tries to split input by batch, run conv and concat results"""
b, _, _, _ = x.size()
if b == 1: # can't split if batch size is 1
return x, False
if self.subsampling_conv_chunking_factor > 1:
cf = self.subsampling_conv_chunking_factor
else:
# avoiding a bug / feature limiting indexing of tensors to 2**31
# see https://github.com/pytorch/pytorch/issues/80020
x_ceil = 2**31 / self._conv_channels * self._stride * self._stride
p = math.ceil(math.log(torch.numel(x) / x_ceil, 2))
cf = 2**p
new_batch_size = b // cf
if new_batch_size == 0: # input is too big
return x, False
return torch.cat([self.conv(chunk) for chunk in torch.split(x, new_batch_size, 0)]), True
def conv_split_by_channel(self, x):
"""For dw convs, tries to split input by time, run conv and concat results"""
x = self.conv[0](x) # full conv2D
x = self.conv[1](x) # activation
for i in range(self._sampling_num - 1):
_, c, t, _ = x.size()
if self.subsampling_conv_chunking_factor > 1:
cf = self.subsampling_conv_chunking_factor
else:
# avoiding a bug / feature limiting indexing of tensors to 2**31
# see https://github.com/pytorch/pytorch/issues/80020
p = math.ceil(math.log(torch.numel(x) / 2**31, 2))
cf = 2**p
new_c = int(c // cf)
if new_c == 0:
new_c = 1
new_t = int(t // cf)
if new_t == 0:
new_t = 1
x = self.channel_chunked_conv(self.conv[i * 3 + 2], new_c, x) # conv2D, depthwise
# splitting pointwise convs by time
x = torch.cat(
[self.conv[i * 3 + 3](chunk) for chunk in torch.split(x, new_t, 2)], 2
) # conv2D, pointwise
x = self.conv[i * 3 + 4](x) # activation
return x
def channel_chunked_conv(self, conv, chunk_size, x):
"""Performs channel chunked convolution"""
ind = 0
out_chunks = []
for chunk in torch.split(x, chunk_size, 1):
step = chunk.size()[1]
if self.is_causal:
chunk = nn.functional.pad(
chunk,
pad=(
self._kernel_size - 1,
self._stride - 1,
self._kernel_size - 1,
self._stride - 1,
),
)
ch_out = nn.functional.conv2d(
chunk,
conv.weight[ind : ind + step, :, :, :],
bias=conv.bias[ind : ind + step],
stride=self._stride,
padding=0,
groups=step,
)
else:
ch_out = nn.functional.conv2d(
chunk,
conv.weight[ind : ind + step, :, :, :],
bias=conv.bias[ind : ind + step],
stride=self._stride,
padding=self._left_padding,
groups=step,
)
out_chunks.append(ch_out)
ind += step
return torch.cat(out_chunks, 1)
def change_subsampling_conv_chunking_factor(self, subsampling_conv_chunking_factor: int):
if (
subsampling_conv_chunking_factor != -1
and subsampling_conv_chunking_factor != 1
and subsampling_conv_chunking_factor % 2 != 0
):
raise ValueError("subsampling_conv_chunking_factor should be -1, 1, or a power of 2")
self.subsampling_conv_chunking_factor = subsampling_conv_chunking_factor
def calc_length(lengths, all_paddings, kernel_size, stride, ceil_mode, repeat_num=1):
"""Calculates the output length of a Tensor passed through a convolution or max pooling layer"""
add_pad: float = all_paddings - kernel_size
one: float = 1.0
for i in range(repeat_num):
lengths = torch.div(lengths.to(dtype=torch.float) + add_pad, stride) + one
if ceil_mode:
lengths = torch.ceil(lengths)
else:
lengths = torch.floor(lengths)
return lengths.to(dtype=torch.int)
#### multihead attention starts here
class AttModule(nn.Module):
"""Attention abstraction module"""
def __init__(self):
super().__init__()
self.export_mode = False
def set_export(self, mode=True):
"""set the export mode"""
self.export_mode = mode
def forward(
self,
x: Tensor,
memory: Optional[Tensor] = None,
pos_emb: Optional[Tensor] = None,
att_mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
"""AttModule forward
Args:
x: torch.Tensor
input tensor.
memory: torch.Tensor, optional
memory tensor.
pos_emb: torch.Tensor, optional
positional encoder embedding.
att_mask: torch.Tensor, optional
attention mask tensor.
"""
return x, memory, pos_emb, att_mask
class AttBlock(Block, AttModule):
"""Attention Block module to support both Attention and Block module."""
def memory_dims(self, max_len=False):
"""memory dimensions"""
return (1, self.input_size)
def masked_softmax(
scores,
mask: Optional[Tensor],
):
if mask is not None:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, time1, time2)
scores = scores.masked_fill(mask, -torch.inf)
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0) # (batch, head, time1, time2)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
return attn
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer with optional relative position embedding and GLU.
Args:
n_head: int
the number of heads.
n_feat: int
input size features.
dropout_rate: float
dropout rate.
use_LN: bool
apply layer norm or not
dropout_at_output: bool
whether to apply dropout at output
attention_inner_dim: int, optional
the attention dimension used in the class,
it can be different from the input dimension n_feat.
default: -1 (equal to n_feat).
use_pt_scaled_dot_product_attention: bool, optional
if set True, use pytorch scaled dot product attention in training. NOTE: this will NOT
be used in ONNX decoding due to a lack of support. In that case, we use the original
attention implementation, which shows no regression.
default: False.
n_value: int, optional
if set to values other than -1, use a different dimension for value. With the default value (i.e. -1), it is backward compatible.
group_size: int, optional. must divide `n_head`
if group_size > 1: GQA
if group_size = 1: MHA
if group_size = n_head: MQA
"""
inv_sqrt_d_k: torch.jit.Final[float]
h: torch.jit.Final[int]
h_k: torch.jit.Final[int]
g: torch.jit.Final[int]
def __init__(
self,
n_head,
n_feat,
dropout_rate,
attention_inner_dim=-1,
glu_type="swish",
bias_in_glu=True,
use_pt_scaled_dot_product_attention=False,
n_value=-1,
group_size: int = 1,
):
super().__init__()
if n_value == -1:
n_value = n_feat
if attention_inner_dim == -1:
attention_inner_dim = n_feat
assert attention_inner_dim % n_head == 0
# We assume d_v always equals d_k
self.d_k = attention_inner_dim // n_head
self.inv_sqrt_d_k = 1.0 / math.sqrt(self.d_k)
self.h = n_head
assert n_head % group_size == 0, "group_size must divide n_head"
self.g = group_size
self.h_k = n_head // group_size
self.linear_q = nn.Linear(n_feat, attention_inner_dim)
self.linear_k = nn.Linear(n_feat, attention_inner_dim // group_size)
self.linear_v = nn.Linear(n_value, attention_inner_dim // group_size)
self.linear_out = nn.Linear(attention_inner_dim // group_size, n_value)
self.attn = torch.jit.Attribute(None, Optional[Tensor])
self.dropout = nn.Dropout(p=dropout_rate)
self.dropout_rate = dropout_rate
self.use_pt_scaled_dot_product_attention = use_pt_scaled_dot_product_attention
if use_pt_scaled_dot_product_attention and group_size > 1:
raise ValueError("Cannot use PT Scaled Attention with GQA")
# Torchscript eager quantization. Note that these functions below are
# NOOPs and have very little impact on performance unless quantization is
# enabled.
self.quant_q = torch.ao.quantization.QuantStub()
self.quant_x = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
self.ffunc = torch.ao.nn.quantized.FloatFunctional()
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
pos_k: Tensor,
pos_v: Tensor,
mask: Optional[Tensor],
relative_attention_bias: Optional[Tensor] = None,
):
"""Compute 'Scaled Dot Product Attention'.
Args:
query: torch.Tensor
query tensor (batch, time1, size)
key: torch.Tensor
key tensor (batch, time2, size)
value: torch.Tensor
value tensor (batch, time1, size)
pos_k: torch.Tensor
key tensor used for relative positional embedding.
pos_v: torch.Tensor
value tensor used for relative positional embedding.
mask: torch.Tensor
mask tensor (batch, time1, time2)
relative_attention_bias: torch.Tensor
bias added to attention logits w.r.t. relative positions (1, n_head, time1, time2)
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) # (b, t, d)
k = self.linear_k(key).view(n_batch, -1, self.h_k, self.d_k) # (b, t, d)
v = self.linear_v(value).view(n_batch, -1, self.h_k, self.d_k)
q = (
q.transpose(1, 2)
if self.use_pt_scaled_dot_product_attention and not torch.jit.is_scripting()
else q.transpose(1, 2) * self.inv_sqrt_d_k
)
k = k.transpose(1, 2) # (batch, head_k, time2, d_k)
v = v.transpose(1, 2) # (batch, head_k, time2, d_k)
if self.use_pt_scaled_dot_product_attention and not torch.jit.is_scripting():
attn_mask = None
if mask is not None:
mask = mask.unsqueeze(1)
if relative_attention_bias is not None:
attn_mask = mask + relative_attention_bias
else:
attn_mask = mask
if mask.dtype != q.dtype:
attn_mask = attn_mask.to(q.dtype)
with torch.backends.cuda.sdp_kernel(
enable_flash=True, enable_math=True, enable_mem_efficient=True
):
x = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
dropout_p=self.dropout_rate,
)
else:
if self.h != self.h_k:
q = q.reshape(n_batch, self.g, self.h_k, -1, self.d_k)
A = torch.einsum("b g h t d, b h s d -> b h t s", q, k)
else:
A = torch.matmul(q, k.transpose(-2, -1))
if pos_k is not None:
if self.h != self.h_k:
B = torch.einsum("b g h t d, t s d -> b h t s", q, pos_k)
else:
reshape_q = (
q.contiguous().view(n_batch * self.h, -1, self.d_k).transpose(0, 1)
) # (t1,nh,dk)
B = torch.matmul(reshape_q, pos_k.transpose(-2, -1)) # pos_k: (t1,dk,t2)
B = B.transpose(0, 1).view(n_batch, self.h, pos_k.size(0), pos_k.size(1))
scores = A + B
else:
scores = A
if relative_attention_bias is not None:
scores = scores + relative_attention_bias
attn = masked_softmax(scores, mask) # (batch, head, time1, time2)
self.attn = attn
p_attn = self.dropout(attn)
x = torch.matmul(p_attn.to(v.dtype), v) # (batch, head, time1, d_k)
if pos_v is not None:
reshape_attn = (
p_attn.contiguous()
.view(n_batch * self.h, pos_v.size(0), pos_v.size(1))
.transpose(0, 1)
) # (t1, bh, t2)
attn_v = (
torch.matmul(reshape_attn, pos_v)
.transpose(0, 1)
.contiguous()
.view(n_batch, self.h, pos_v.size(0), self.d_k)
)
x = x + attn_v
x = (
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h_k * self.d_k)
) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def unfold_tensor(xs_pad, max_seq_len):
"""
For a given tensor with shape of (N, T, D), if sequence length T is longer than max_seq_len,
this function unfold it to a (NT', max_seq_len, D) where T' is T // max_seq_len.
Args:
xs_pad: N, T, D
"""
_, _, D = xs_pad.shape
xs_pad = xs_pad.transpose(-1, -2) # convert to N, D, T
# N x D x 1 x T => N x (D x max_seq_len) x T'
xs_pad = F.unfold(
xs_pad[..., None, :],
kernel_size=(1, max_seq_len),
stride=(1, max_seq_len),
)
new_bsz, _, slen = xs_pad.shape
# N x D x max_seq_len x T'
xs_pad = xs_pad.view(new_bsz, -1, max_seq_len, slen)
# N x T' x max_seq_len x D
xs_pad = xs_pad.permute(0, 3, 2, 1).contiguous()
# NT' x max_seq_len x D
xs_pad = xs_pad.view(-1, max_seq_len, D)
return xs_pad
# conformer_encoder.py
class MultiSequential(torch.nn.Sequential):
"""Multi-input multi-output torch.nn.Sequential"""
@torch.jit.ignore
def forward(self, *args):
"""Forward method implementation."""
for m in self:
args = m(*args)
return args
def repeat(repeat_num, module_gen_fn):
"""repeat module N times
:param int repeat_num: repeat time
:param function module_gen_fn: function to generate module
:return: repeated modules
:rtype: MultiSequential
"""
return MultiSequential(*[module_gen_fn(i) for i in range(repeat_num)])
class ConformerEncoderLayer(nn.Module):
"""ConformerEncoder Layer module.
for more details see conformer paper:
https://arxiv.org/abs/2005.08100
This module implement the Conformer block layer.
Args:
d_model: int
attention dim.
ext_pw_out_channel: int
if > 0, ext_pw_out_channel is a dim channel size
for the last pointwise conv after swish activation.
depthwise_seperable_out_channel: int
if set different to 0, the number of depthwise_seperable_out_channel
will be used as a channel_out of the second conv1d layer.
otherwise, it equal to 0, the second conv1d layer is skipped.
depthwise_multiplier: int
number of input_dim channels duplication. this value
will be used to compute the hidden channels of the Conv1D.
n_head: int
the number of heads for multihead attention module.
d_ffn: int
output size of the feed_forward blocks.
ext_pw_kernel_size: int
kernel size of the conv pointwise of the conformer.
kernel_size: int
kernel size.
dropout_rate: float
dropout rate.
causal: bool, optional
if set to True, convolution have no access
to future frames. default False.
batch_norm: bool, optional
if set to True, apply batchnorm before activation
in ConvModule layer of the conformer.
default False
activation: str, optional
activation function name,
one of ["relu", "swish", "sigmoid"],
sigmoid activation is only used with "glu_in_fnn=True",
default "relu".
chunk_se: int, optional
0 for offline SE.
1 for streaming SE, where mean is computed
by accumulated history until current chunk_se.
2 for streaming SE, where mean is computed
by only the current chunk.
default 0.
chunk_size: int, optional
chunk_size for cnn. default 18
conv_activation: str, optional
activation function used in ConvModule part
of the conformer, default "relu".
conv_glu_type: str, optional
activation function used for the glu inside
the ConvModule part of the conformer.
default: "sigmoid".
bias_in_glu: bool, optional
if set to True, use additive bias in the weight module
before GLU.
linear_glu_in_convm: bool, optional
if set to True, use GLULinear module,
otherwise, used GLUPointWiseConv module.
default to False.
attention_innner_dim: int, otional
if equal to -1, attention dim for linears k/q/v is
equal to d_model. otherwise attention_innner_dim is used.
default -1.
attention_glu_type: str, optional
activation function for glu used in the multihead attention,
default "swish".
activation_checkpointing: str, optional
a dictionarry of {"module","interval","offload"}, where
"module": str
accept ["transformer", "attention"] to select
which module should do activation checkpointing.
"interval": int, default 1,
interval of applying activation checkpointing,
interval = 1 means that we apply checkpointing
on every layer (if activation), otherwise,
we apply it every x interval.
"offload": bool, default False,
if set to True, we offload activation to cpu and
reload it during backward, otherwise,
we recalculate activation in backward.
default "".
export: bool, optional
if set to True, it remove the padding from convolutional layers
and allow the onnx conversion for inference.
default False.
use_pt_scaled_dot_product_attention: bool, optional
if set to True, use pytorch's scaled dot product attention implementation in training.
attn_group_sizes: int, optional
the number of groups to use for attention, default 1 (Multi-Head Attention),
1 = typical Multi-Head Attention,
1 < attn_group_sizes < attention_heads = Grouped-Query Attention
attn_group_sizes = attenion_heads = Multi-Query Attention
"""
def __init__(
self,
d_model=512,
ext_pw_out_channel=0,
depthwise_seperable_out_channel=256,
depthwise_multiplier=1,
n_head=4,
d_ffn=2048,
ext_pw_kernel_size=1,
kernel_size=3,
dropout_rate=0.1,
causal=False,
batch_norm=False,
activation="relu",
chunk_se=0,
chunk_size=18,
conv_activation="relu",
conv_glu_type="sigmoid",
bias_in_glu=True,
linear_glu_in_convm=False,
attention_innner_dim=-1,
attention_glu_type="swish",
activation_checkpointing="",
export=False,
use_pt_scaled_dot_product_attention=False,
attn_group_sizes: int = 1,
):
super().__init__()
self.feed_forward_in = FeedForward(
d_model=d_model,
d_inner=d_ffn,
dropout_rate=dropout_rate,
activation=activation,
bias_in_glu=bias_in_glu,
)
self.self_attn = encoder_checkpoint_wrapper(
activation_checkpointing,
MultiHeadedAttention,
)(
MultiHeadedAttention(
n_head,
d_model,
dropout_rate,
attention_innner_dim,
attention_glu_type,
bias_in_glu,
use_pt_scaled_dot_product_attention=use_pt_scaled_dot_product_attention,
group_size=attn_group_sizes,
)
)
self.conv = ConvModule(
d_model,
ext_pw_out_channel,
depthwise_seperable_out_channel,
ext_pw_kernel_size,
kernel_size,
depthwise_multiplier,
dropout_rate,
causal,
batch_norm,
chunk_se,
chunk_size,
conv_activation,
conv_glu_type,
bias_in_glu,
linear_glu_in_convm,
export=export,
)
self.feed_forward_out = FeedForward(
d_model=d_model,
d_inner=d_ffn,
dropout_rate=dropout_rate,
activation=activation,
bias_in_glu=bias_in_glu,
)
self.layer_norm_att = nn.LayerNorm(d_model)
self.layer_norm = nn.LayerNorm(d_model)
def forward(
self,
x,
pos_k,
pos_v,
mask,
relative_attention_bias: Optional[Tensor] = None,
):
"""ConformerEncoder forward.
Args:
x: torch.Tensor
input feature of shape (batch, max_time_in, size)
pos_k: torch.Tensor
positional key embedding.
mask: torch.Tensor
mask for x (batch, max_time_in)
relative_attention_bias: Optional[torch.Tensor]
bias added to attention logits w.r.t. relative positions (1, n_head, time1, time2)
"""
x = x + 0.5 * self.feed_forward_in(x)
norm_x = self.layer_norm_att(x)
x = x + self.self_attn(
norm_x,
norm_x,
norm_x,
pos_k,
pos_v,
mask,
relative_attention_bias=relative_attention_bias,
)
x = x + self.conv(x)
x = x + 0.5 * self.feed_forward_out(x)
out = self.layer_norm(x)
return out, pos_k, pos_v, mask
class TransformerEncoderBase(abc.ABC, nn.Module):
"""The Base class for Transformer based encoders
Please set causal = True in streaming model
Args:
input_size: int
input feature dimension.
chunk_size: int, list(int)
Number of frames for each chunk
This variable can take 2 forms:
int: Used for inference, or single chunk size training
list(int) : Used only for variable chunk size training
Some examples for the 2 cases:
chunk_size = 12
chunk_size = [6, 8, 12, 24]
left_chunk: int, list(int)
Number of chunks used for masking in streaming mode.
This variable can take 2 forms:
int: Used for inference, or single chunk size training
list(int) : Used only for variable chunk size training. When
chunk_size is a list, left_chunk must be a list with same length.
Some examples for the 2 cases:
left_chunk = 6
left_chunk = [12, 9, 6, 3]
attention_dim: int, optional
attention dimension. default 256.
attention_heads: int, optional
the number of heads. default 4
input_layer: str, optional
input layer type before Conformer,
one of ["linear", "conv2d", "custom", "vgg2l", "embed"],
default "conv2d"
cnn_out: int, optional
the number of CNN channels before Conformer.
default -1.
cnn_layer_norm: bool, optional
layer norm between Conformer and the first CNN.
default False.
time_reduction: int, optional
time reduction factor
default 4
dropout_rate: float, optional
dropout rate. default 0.1
padding_idx: int, optional
padding index for input_layer=embed
default -1
relative_attention_bias_args: dict, optional
use more efficient scalar bias-based relative multihead attention (Q*K^T + B)
implemented in cmb.basics.embedding.[T5/ALiBi]RelativeAttentionLogitBias
usage: relative_attention_bias_args={"type": t5/alibi}
additional method-specific arguments can be provided (see transformer_base.py)
positional_dropout_rate: float, optional
dropout rate after positional encoding. default 0.0
nemo_conv_settings: dict, optional
A dictionary of settings for NeMo Subsampling.
default None
conv2d_extra_padding: str, optional
Add extra padding in conv2d subsampling layers. Choices are
(feat, feat_time, none, True).
if True or feat_time, the extra padding is added into non full
supraframe utts in batch.
Default: none
attention_group_size: int, optional
the number of groups to use for attention, default 1 (Multi-Head Attention),
1 = typical Multi-Head Attention,
1 < attention_group_size < attention_heads = Grouped-Query Attention
attention_group_size = attenion_heads = Multi-Query Attention
"""
def __init__(
self,
input_size,
chunk_size,
left_chunk,
attention_dim=256,
attention_heads=4,
input_layer="nemo_conv",
cnn_out=-1,
cnn_layer_norm=False,
time_reduction=4,
dropout_rate=0.0,
padding_idx=-1,
relative_attention_bias_args=None,
positional_dropout_rate=0.0,
nemo_conv_settings=None,
conv2d_extra_padding: Literal["feat", "feat_time", "none", True] = "none",
attention_group_size=1,
encoder_embedding_config=None,
):
super().__init__()
self.input_size = input_size
self.input_layer = input_layer
self.chunk_size = chunk_size
self.left_chunk = left_chunk
self.attention_dim = attention_dim
self.num_heads = attention_heads
self.attention_group_size = attention_group_size
self.time_reduction = time_reduction
self.nemo_conv_settings = nemo_conv_settings
self.encoder_embedding_config = encoder_embedding_config
if self.input_layer == "nemo_conv":
default_nemo_conv_settings = {
"subsampling": "dw_striding",
"subsampling_factor": self.time_reduction,
"feat_in": input_size,
"feat_out": attention_dim,
"conv_channels": 256,
"subsampling_conv_chunking_factor": 1,
"activation": nn.ReLU(),
"is_causal": False,
}
# Override any of the defaults with the incoming, user settings
if nemo_conv_settings:
default_nemo_conv_settings.update(nemo_conv_settings)
for i in ["subsampling_factor", "feat_in", "feat_out"]:
assert (
i not in nemo_conv_settings
), "{i} should be specified outside of the NeMo dictionary"
self.embed = NemoConvSubsampling(
**default_nemo_conv_settings,
)
else:
raise ValueError("unknown input_layer: " + input_layer)
self.pos_emb = AbsolutePositionalEncoding(attention_dim, positional_dropout_rate)
self.relative_attention_bias_type = (
relative_attention_bias_args.get("type") if relative_attention_bias_args else None
)
if self.relative_attention_bias_type == "t5":
assert (
self.num_heads % self.attention_group_size == 0
), "attention_group_size must divide n_head"
self.relative_attention_bias_layer = T5RelativeAttentionLogitBias(
self.num_heads // self.attention_group_size,
max_distance=relative_attention_bias_args.get("t5_bias_max_distance", 1000),
symmetric=relative_attention_bias_args.get("t5_bias_symmetric", False),
)
else:
raise NotImplementedError
def post_init(self, init_model_config):
pretrained_speech_encoder_path = init_model_config.get('pretrained_speech_encoder_path', None)
if pretrained_speech_encoder_path:
model_state = torch.load(pretrained_speech_encoder_path, map_location="cpu")
encoder_state_dict = {}
for k, v in model_state.items():
if "encoder." in k:
tmp_k = k.replace("encoder.", "")
encoder_state_dict[tmp_k] = v
if hasattr(self, "encoder_embedding"):
del self.encoder_embedding
self.load_state_dict(encoder_state_dict)
if not hasattr(self, "encoder_embedding"):
self.encoder_embedding = MeanVarianceNormLayer(self.encoder_embedding_config["input_size"])
mean_file = init_model_config.get('mean_file', None)
invstd_file = init_model_config.get('invstd_file', None)
if mean_file is not None and invstd_file is not None:
self.encoder_embedding.load_mean_invstd(mean_file, invstd_file)
def compute_lens_change(self, feature_lens):
"""feature_lens: int
return updated feature lens.
This used to return a different lambda function for each case that computed
the right thing. That does not work within Torchscript. If you really
need this to be faster, create nn.Module()-s for all the cases and return
one of them. Torchscript does support that.
"""
if self.input_layer == "nemo_conv":
# Handle the special causal case
subsampling_causal_cond = self.nemo_conv_settings.get("subsampling", "dw_striding") in [
"dw_striding",
"striding",
"striding_conv1d",
]
is_causal = self.nemo_conv_settings.get("is_causal", False)
if is_causal and subsampling_causal_cond:
lens_change = (
torch.ceil(feature_lens / self.time_reduction).long()
if isinstance(feature_lens, Tensor)
else math.ceil(feature_lens / self.time_reduction)
)
feature_lens_remainder = feature_lens % self.time_reduction
if isinstance(feature_lens, Tensor):
lens_change[feature_lens_remainder != 1] += 1
elif feature_lens_remainder != 1:
lens_change += 1
return lens_change
ceil_func = math.ceil if isinstance(feature_lens, int) else torch.ceil
return ceil_func(feature_lens / self.time_reduction)
@abc.abstractmethod
def forward(self):
"""Abstract forward method implementation."""
def _chunk_size_selection(self, chunk_size=None, left_chunk=None):
"""If chunk size is a list, we will randomly select a chunk size."""
if chunk_size is None:
chunk_size = self.chunk_size
if left_chunk is None:
left_chunk = self.left_chunk
if isinstance(chunk_size, list):
# Variable chunk size during training
chunk_size_index = int(torch.randint(low=0, high=len(chunk_size), size=(1,)))
chunk_size_train_eff = chunk_size[chunk_size_index]
if not isinstance(left_chunk, list):
raise ValueError("Since chunk_size is a list, left_chunk must be a list")
if len(left_chunk) != len(chunk_size):
raise ValueError(
"The length of left_chunk must be the same as length of chunk_size."
)
left_chunk_train_eff = left_chunk[chunk_size_index]
else:
chunk_size_train_eff = chunk_size
left_chunk_train_eff = left_chunk
return chunk_size_train_eff, left_chunk_train_eff
def _get_embed_class(self, embed):
# pylint: disable=protected-access
is_embed_using_act_chkpt = isinstance(embed, CheckpointWrapper)
is_embed_fsdp_wrapped = isinstance(embed, FullyShardedDataParallel)
embed_class = embed
if is_embed_using_act_chkpt:
embed_class = embed._checkpoint_wrapped_module
if is_embed_fsdp_wrapped:
embed_class = embed.module
return embed_class
def _forward_embeddings_core(self, input_tensor, masks):
embed_class = self._get_embed_class(self.embed)
assert isinstance(embed_class, NemoConvSubsampling)
input_tensor, masks = self.embed(input_tensor, masks)
return input_tensor, masks
def _position_embedding(self, input_tensor):
pos_k = None
pos_v = None
if self.relative_attention_bias_layer is None:
input_tensor = self.pos_emb(input_tensor) # default to add abs sinusoid embedding
return pos_k, pos_v
def _streaming_mask(self, seq_len, batch_size, chunk_size, left_chunk):
chunk_size_train_eff, left_chunk_train_eff = self._chunk_size_selection(
chunk_size, left_chunk
)
# Create mask matrix for streaming
# S stores start index. if chunksize is 18, s is [0,18,36,....]
chunk_start_idx = np.arange(0, seq_len, chunk_size_train_eff)
# avoid randomness when run evaluation or decoding
if self.training and np.random.rand() > 0.5:
# Either first or last chunk is not complete.
# If only the last one is not complete, EOS is not effective
chunk_start_idx = seq_len - chunk_start_idx
chunk_start_idx = chunk_start_idx[::-1]
chunk_start_idx = chunk_start_idx[:-1]
chunk_start_idx = np.insert(chunk_start_idx, 0, 0)
enc_streaming_mask = (
adaptive_enc_mask(seq_len, chunk_start_idx, left_window=left_chunk_train_eff)
.unsqueeze(0)
.expand([batch_size, -1, -1])
)
return enc_streaming_mask
def forward_embeddings(self, xs_pad, masks, chunk_size_nc=None, left_chunk_nc=None):
"""Forwarding the inputs through the top embedding layers
Args:
xs_pad: torch.Tensor
input tensor
masks: torch.Tensor
input mask
chunk_size_nc: (optional, default is None) chunk size for non-causal layers
left_chunk_nc: (optional, default is None) # of left chunks for non-causal layers
"""
# pylint: disable=R0915
# get new lens.
seq_len = int(self.compute_lens_change(xs_pad.shape[1]))
if seq_len <= 0:
raise ValueError(
f"""The squence length after time reduction is invalid: {seq_len}.
Your input feature is too short. Consider filtering out the very
short sentence from data loader""",
)
batch_size = xs_pad.shape[0]
enc_streaming_mask = self._streaming_mask(
seq_len, batch_size, self.chunk_size, self.left_chunk
)
if xs_pad.is_cuda:
enc_streaming_mask = enc_streaming_mask.cuda()
xs_pad = xs_pad.cuda()
input_tensor = xs_pad
input_tensor, masks = self._forward_embeddings_core(input_tensor, masks)
streaming_mask = enc_streaming_mask
if streaming_mask is not None and masks is not None:
hs_mask = masks & streaming_mask
elif masks is not None:
hs_mask = masks
else:
hs_mask = streaming_mask
if chunk_size_nc is not None:
enc_streaming_mask_nc = self._streaming_mask(
seq_len, batch_size, chunk_size_nc, left_chunk_nc
)
if xs_pad.is_cuda:
enc_streaming_mask_nc = enc_streaming_mask_nc.cuda()
if masks is not None:
hs_mask_nc = masks & enc_streaming_mask_nc
else:
hs_mask_nc = enc_streaming_mask_nc
else:
hs_mask_nc = None
pos_k, pos_v = self._position_embedding(input_tensor)
if chunk_size_nc is None:
return input_tensor, pos_k, pos_v, hs_mask, masks
return input_tensor, pos_k, pos_v, hs_mask, masks, hs_mask_nc
def get_offset(self):
"""Returns offset used when retaining inputs for decoding.
This is essentially, how many additional frames have to be added to
the front-end CNN input to ensure it can produce a single output.
So if the "padding" parameter is 0, typically offset will be > 0.
"""
return get_offset(self.input_layer, self.time_reduction)
def get_offset(input_layer: str, time_reduction: int):
"""Get an offset. We will use the offset for determining #frames of a subsampled feature.
Args:
input_layer (str): Type of an input layer
time_reduction (int): time reduction factor for downsampling a feature
Returns:
int: offset
"""
if input_layer in ("conv2d", "nemo_conv") and time_reduction == 4:
return 3
if input_layer in ("conv2d",) and time_reduction == 6:
return 1
if input_layer in ("conv2d", "nemo_conv") and time_reduction == 8:
return 7
return 0
class ConformerEncoder(TransformerEncoderBase):
"""ConformerEncoder module.
see original paper for more details:
https://arxiv.org/abs/2005.08100
Please set causal = True in streaming model
Args:
input_size: int
input feature dimension.
chunk_size: int, list(int)
Number of frames for each chunk
This variable can take 2 forms:
int: Used for inference, or single chunk size training
list(int) : Used only for variable chunk size training
Some examples for the 2 cases:
chunk_size = 12
chunk_size = [6, 8, 12, 24]
left_chunk: int, list(int)
Number of chunks used for masking in streaming mode.
This variable can take 2 forms:
int: Used for inference, or single chunk size training
list(int) : Used only for variable chunk size training. When
chunk_size is a list, left_chunk must be a list with same length.
Some examples for the 2 cases:
left_chunk = 6
left_chunk = [12, 9, 6, 3]
left_chunk: int
number of chunks used for masking in streaming mode.
num_lang: int
This parameter is used to store the number of languages in the lang_dict,
only used for multiseed/multilingual models. default None.
attention_dim: int, optional
attention dimension. default 256.
attention_heads: int, optional
the number of heads. default 4
linear_units:
the number of units of position-wise feed forward.
default 2048
num_block:
number of Transformer layer. default 6
dropout_rate: float, optional
dropout rate. default 0.1
input_layer: str, optional
input layer type before Conformer,
one of ["linear", "conv2d", "custom", "vgg2l", "embed"],
default "conv2d"
causal: bool, optional
if set to True, convolution have no access
to future frames. default False.
batch_norm: bool, optional
if set to True, apply batchnorm before activation
in ConvModule layer of the conformer.
default False
cnn_out: int, optional
the number of CNN channels before Conformer.
default -1.
cnn_layer_norm: bool, optional
layer norm between Conformer and the first CNN.
default False.
ext_pw_out_channel: int, optional
the number of channel for CNN
before depthwise_seperable_CNN.
If 0 then use linear. default 0.
ext_pw_kernel_size: int, optional
kernel size of N before depthwise_seperable_CNN.
only work for ext_pw_out_channel > 0.
default 1
depthwise_seperable_out_channel: int, optional
the number of channel for
depthwise_seperable_CNN.
default 256.
depthwise_multiplier: int, optional
the number of multiplier for
depthwise_seperable_CNN.
default 1.
chunk_se: int, optional
0 for offline SE.
1 for streaming SE, where mean is computed
by accumulated history until current chunk_se.
2 for streaming SE, where mean is computed
by only the current chunk.
default 0.
kernel_size: int, optional
the number of kernels for depthwise_seperable_CNN.
default 3.
activation: str, optional
FeedForward block activation.
one of ["relu", "swish", "sigmoid"]
default "relu".
conv_activation: str, optional
activation function used in ConvModule part
of the conformer, default "relu".
conv_glu_type: str, otional
activation used use glu in depthwise_seperable_CNN,
default "sigmoid"
bias_in_glu: bool, optional
if set to True, use additive bias in the weight module
before GLU. default True
linear_glu_in_convm: bool, optional
if set to True, use GLULinear module,
otherwise, used GLUPointWiseConv module.
default to False.
attention_glu_type: str
only work for glu_in_attention !=0
default "swish".
export: bool, optional
if set to True, it remove the padding from convolutional layers
and allow the onnx conversion for inference.
default False.
activation_checkpointing: str, optional
a dictionarry of {"module","interval","offload"}, where
"module": str
accept ["transformer", "attention"] to select
which module should do activation checkpointing.
"interval": int, default 1,
interval of applying activation checkpointing,
interval = 1 means that we apply checkpointing
on every layer (if activation), otherwise,
we apply it every x interval.
"offload": bool, default False,
if set to True, we offload activation to cpu and
reload it during backward, otherwise,
we recalculate activation in backward.
default "".
extra_layer_output_idx: int
the layer index to be exposed.
relative_attention_bias_args: dict, optional
use more efficient scalar bias-based relative multihead attention (Q*K^T + B)
implemented in cmb.basics.embedding.[T5/ALiBi]RelativeAttentionLogitBias
usage: relative_attention_bias_args={"type": t5/alibi}
additional method-specific arguments can be provided (see transformer_base.py)
time_reduction: int optional
time reduction factor
default 4
use_pt_scaled_dot_product_attention: whether to use pytorch scaled dot product attention
in training.
Default: False
nemo_conv_settings: dict, optional
A dictionary of settings for NeMo Subsampling.
default: None
usage: nemo_conv_settings=
{
"subsampling":
dw_striding/striding/dw_striding_conv1d/striding_conv1d,
"conv_channels": int,
"subsampling_conv_chunking_factor": int,
"is_causal": True/False
}
conv2d_extra_padding: str, optional
Add extra padding in conv2d subsampling layers. Choices are
(feat, feat_time, none, True)
Default: none
replication_pad_for_subsample_embedding: For batched-streaming decoding, use
"replication" padding for the cache at start of utterance.
Default: False
attention_group_size: int, optional
the number of groups to use for attention, default 1 (Multi-Head Attention),
1 = typical Multi-Head Attention,
1 < attention_group_size < attention_heads = Grouped-Query Attention
attention_group_size = attenion_heads = Multi-Query Attention
"""
extra_multi_layer_output_idxs: List[int]
def __init__( # pylint: disable-all
self,
input_size,
chunk_size,
left_chunk,
num_lang=None,
attention_dim=256,
attention_heads=4,
linear_units=2048,
num_blocks=6,
dropout_rate=0.1,
input_layer="nemo_conv",
causal=True,
batch_norm=False,
cnn_out=-1,
cnn_layer_norm=False,
ext_pw_out_channel=0,
ext_pw_kernel_size=1,
depthwise_seperable_out_channel=256,
depthwise_multiplier=1,
chunk_se=0,
kernel_size=3,
activation="relu",
conv_activation="relu",
conv_glu_type="sigmoid",
bias_in_glu=True,
linear_glu_in_convm=False,
attention_glu_type="swish",
export=False,
extra_layer_output_idx=-1,
extra_multi_layer_output_idxs=[],
activation_checkpointing="",
relative_attention_bias_args=None,
time_reduction=4,
use_pt_scaled_dot_product_attention=False,
nemo_conv_settings=None,
conv2d_extra_padding: Literal["feat", "feat_time", "none", True] = "none",
replication_pad_for_subsample_embedding=False,
attention_group_size=1,
encoder_embedding_config=None,
):
super().__init__(
input_size,
chunk_size,
left_chunk,
attention_dim,
attention_heads,
input_layer,
cnn_out,
cnn_layer_norm,
time_reduction,
dropout_rate=dropout_rate,
relative_attention_bias_args=relative_attention_bias_args,
positional_dropout_rate=0.0,
nemo_conv_settings=nemo_conv_settings,
conv2d_extra_padding=conv2d_extra_padding,
attention_group_size=attention_group_size,
encoder_embedding_config=encoder_embedding_config,
)
self.num_blocks = num_blocks
self.num_lang = num_lang
self.kernel_size = kernel_size
self.embed = embedding_checkpoint_wrapper(activation_checkpointing)(self.embed)
self.replication_pad_for_subsample_embedding: bool = replication_pad_for_subsample_embedding
assert self.num_heads % attention_group_size == 0, "attention_group_size must divide n_head"
self.num_heads_k = self.num_heads // attention_group_size
self.encoders = repeat(
num_blocks,
lambda i: encoder_checkpoint_wrapper(
activation_checkpointing, ConformerEncoderLayer, i
)(
ConformerEncoderLayer(
d_model=attention_dim,
ext_pw_out_channel=ext_pw_out_channel,
depthwise_seperable_out_channel=depthwise_seperable_out_channel,
depthwise_multiplier=depthwise_multiplier,
n_head=attention_heads,
d_ffn=linear_units,
ext_pw_kernel_size=ext_pw_kernel_size,
kernel_size=kernel_size,
dropout_rate=dropout_rate,
causal=causal,
batch_norm=batch_norm,
activation=activation,
chunk_se=chunk_se,
chunk_size=chunk_size,
conv_activation=conv_activation,
conv_glu_type=conv_glu_type,
bias_in_glu=bias_in_glu,
linear_glu_in_convm=linear_glu_in_convm,
attention_glu_type=attention_glu_type,
activation_checkpointing=attn_checkpointing(activation_checkpointing, i),
export=export,
use_pt_scaled_dot_product_attention=use_pt_scaled_dot_product_attention,
attn_group_sizes=attention_group_size,
)
),
)
self.extra_layer_output_idx = extra_layer_output_idx
self.extra_multi_layer_output_idxs = extra_multi_layer_output_idxs
# Make a zeros scalar we can use in get_initial_state to determine
# the device and the needed dtype:
self.register_buffer("dev_type", torch.zeros(()), persistent=False)
def init_relative_attention_bias(self, input_tensor):
if self.relative_attention_bias_layer:
return self.relative_attention_bias_layer(input_tensor)
def calculate_hs_mask(self, xs_pad, device, mask):
max_audio_length = xs_pad.shape[1]
batch_size = xs_pad.shape[0]
enc_streaming_mask = self._streaming_mask(
max_audio_length, batch_size, self.chunk_size, self.left_chunk
)
enc_streaming_mask = enc_streaming_mask.to(device)
if mask is None:
return enc_streaming_mask
feature_lens = mask.sum(1)
padding_length = feature_lens
pad_mask = (
torch.arange(0, max_audio_length, device=device).expand(padding_length.size(0), -1)
< padding_length.unsqueeze(1)
)
pad_mask = pad_mask.unsqueeze(1)
pad_mask = pad_mask & enc_streaming_mask
return pad_mask
@torch.jit.ignore
def forward(self, xs_pad, masks):
"""Conformer Forward function
Args:
xs_pad: torch.Tensor
input tensor
masks: torch.Tensor
post-embedding input lengths
"""
xs_pad = self.encoder_embedding(xs_pad)
input_tensor, pos_k, pos_v, hs_mask, masks = self.forward_embeddings(xs_pad, masks)
unfolded = False
ori_bz, seq_len, D = input_tensor.shape
max_seq_len = 500 #maxium position for absolute positional encoding
if seq_len > max_seq_len:
# audio sequence is longer than max_seq_len, unfold it into chunks of max_seq_len
unfolded = True
# the unfold op will drop residual frames, pad it to the multiple of max_seq_len
if seq_len % max_seq_len > 0:
chunk_pad_size = max_seq_len - (seq_len % max_seq_len)
else:
chunk_pad_size = 0
if chunk_pad_size > 0:
input_tensor_pad = F.pad(input_tensor, (0, 0, 0, chunk_pad_size), "constant", 0)
input_tensor = input_tensor_pad.to(input_tensor.device)
input_tensor = unfold_tensor(input_tensor, max_seq_len)
if masks is not None:
# revise hs_mask here because the previous calculated hs_mask did not consider extra pad
subsampled_pad_mask = masks.squeeze(1) # [bz, subsampled_unmask_seq_len]
extra_padded_subsamlped_pad_mask = F.pad(subsampled_pad_mask, (0, chunk_pad_size), "constant", False) # extra padding to the pad mask
extra_padded_subsamlped_pad_mask = extra_padded_subsamlped_pad_mask.unsqueeze(-1).float()
masks_unfold = unfold_tensor(extra_padded_subsamlped_pad_mask, max_seq_len) # unfold the pad mask like we did to the input tensor
masks_unfold = masks_unfold.squeeze(-1).bool() # unfold op does not support bool tensor
else:
masks_unfold = None
hs_mask = self.calculate_hs_mask(input_tensor, input_tensor.device, masks_unfold) # calculate hs_mask based on the unfolded pad mask
layer_emb = None
relative_attention_bias = self.init_relative_attention_bias(input_tensor)
_simplified_path = (
self.extra_layer_output_idx == -1
and relative_attention_bias is None
)
if _simplified_path:
input_tensor, *_ = self.encoders(input_tensor, pos_k, pos_v, hs_mask)
else:
for i, layer in enumerate(self.encoders):
input_tensor, _, _, _ = layer(
input_tensor,
pos_k,
pos_v,
hs_mask,
relative_attention_bias=relative_attention_bias,
)
if i == self.extra_layer_output_idx:
layer_emb = input_tensor
if unfolded:
embed_dim = input_tensor.shape[-1]
input_tensor = input_tensor.reshape(ori_bz, -1, embed_dim)
# if we ever padded before unfolding, we need to remove the padding
if chunk_pad_size > 0:
input_tensor = input_tensor[:, :-chunk_pad_size, :]
return input_tensor, masks #, layer_emb
def gradient_checkpointing_enable(self):
pass
|