File size: 110,518 Bytes
d93d2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

#!/usr/bin/env python3

# activation_checkpointing.py
"""helper function for activation checkpointing"""

from typing import Union, Dict, Callable
from functools import partial
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    checkpoint_wrapper,
    offload_wrapper,
    CheckpointImpl,
)


# utils.py
"""cascade basic blocks"""

import math
import backoff
import random
import numpy as np
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch import Tensor
import torch.nn.functional as F


# conformer_encoder.py
"""ConformerEncoder Module"""

from typing import Optional, Tuple, List, Literal
import abc
import math
import numpy as np

import torch
from torch import nn, Tensor

from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import CheckpointWrapper
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel


# activation_checkpointing.py
def validate_checkpointing_config(activation_checkpointing):
    """validate activation checkpointing configuration"""
    if isinstance(activation_checkpointing, str):
        assert activation_checkpointing in (
            "",
            "checkpoint",
            "offload",
        ), "activation_checkpointing has to be a dict or a str in ('', 'checkpoint', 'offload')."
    elif isinstance(activation_checkpointing, dict):
        assert activation_checkpointing.get("module", "transformer") in (
            "transformer",
            "attention",
        ), "module in activation_checkpointing has to be in ('transformer', 'attention')."
    else:
        raise ValueError("activation_checkpointing has to be a str or dict.")


def embedding_checkpoint_wrapper(
    activation_checkpointing: Union[str, Dict],
) -> Callable:
    """return encoder embedding activation checkpoint wrapper"""
    validate_checkpointing_config(activation_checkpointing)

    if isinstance(activation_checkpointing, str):
        if activation_checkpointing:
            if activation_checkpointing == "offload":
                return offload_wrapper
            return partial(checkpoint_wrapper)
        return lambda x: x

    if isinstance(activation_checkpointing, dict):
        enabled = activation_checkpointing.get("embed", False)
        if enabled:
            offloading = activation_checkpointing.get("offload", False)
            if offloading:
                return offload_wrapper
            impl = (
                CheckpointImpl.REENTRANT
                if activation_checkpointing.get("reentrant", False)
                else CheckpointImpl.NO_REENTRANT
            )
            return partial(checkpoint_wrapper, checkpoint_impl=impl)
        return lambda x: x
    raise ValueError("Invalid activation_checkpointing config")


def encoder_checkpoint_wrapper(
    activation_checkpointing: Union[str, Dict],
    layer_cls: type,
    idx: int = 0,
) -> Callable:
    """return encoder activation checkpoint wrapper"""
    validate_checkpointing_config(activation_checkpointing)

    if isinstance(activation_checkpointing, str):
        if activation_checkpointing:
            if activation_checkpointing == "offload":
                return offload_wrapper
            return partial(checkpoint_wrapper)
        return lambda x: x

    if isinstance(activation_checkpointing, dict):
        target_layer_cls = activation_checkpointing.get("module", "transformer")
        if target_layer_cls.lower() == "transformer":
            target_layer_cls = (
                "EncoderLayer",
                "ConformerEncoderLayer",
            )
        elif target_layer_cls.lower() == "attention":
            target_layer_cls = ("MultiHeadedAttention", "MultiHeadAttention")
        checkpointing_interval = activation_checkpointing.get("interval", 1)
        offloading = activation_checkpointing.get("offload", False)
        impl = (
            CheckpointImpl.REENTRANT
            if activation_checkpointing.get("reentrant", True)
            else CheckpointImpl.NO_REENTRANT
        )

        if idx % checkpointing_interval == 0 and layer_cls.__name__ in target_layer_cls:
            if offloading:
                return offload_wrapper
            return partial(checkpoint_wrapper, checkpoint_impl=impl)
        return lambda x: x

    raise ValueError("Invalid activation_checkpointing config")


def attn_checkpointing(activation_checkpointing: Union[str, Dict], i) -> Union[str, Dict]:
    """return activation checkpointing config for attention layer"""
    if isinstance(activation_checkpointing, str):
        return ""

    if isinstance(activation_checkpointing, dict):
        target_layer_cls = activation_checkpointing.get("module", "transformer")
        checkpointing_interval = activation_checkpointing.get("interval", 1)
        if target_layer_cls == "attention" and i % checkpointing_interval == 0:
            return activation_checkpointing
        return ""

    raise ValueError("Invalid activation_checkpointing config")


# utils.py
class Block(nn.Module):
    """Block abstract module"""

    def __init__(self, input_size, output_size):
        super().__init__()
        self.input_size = input_size
        self.output_size = output_size

def get_activation(name="relu"):
    """Select an activation function by name

    Args:
        name: str
            activation function name,
            one of ["relu", "gelu", "swish", "sigmoid"],
            default "relu".
    """
    name = name.lower()
    if name == "relu":
        return nn.ReLU(inplace=True)
    if name == "gelu":
        return nn.GELU()
    if name == "swish":
        return Swish()
    if name == "sigmoid":
        return torch.nn.Sigmoid()
    return nn.Identity()

def adaptive_enc_mask(x_len, chunk_start_idx, left_window=0, right_window=0):
    """
    The function is very important for Transformer Transducer Streaming mode
    Args:
        xs_len (int): sequence length
        chunk_start_idx (list): first idx of each chunk, such as [0,18,36,48]. It also supports adaptive chunk size [0,10,15,45]
        left_window (int): how many left chunks can be seen
        right_window (int): how many right chunks can be seen. It is used for chunk overlap model.
        Returns:
            mask (torch.Tensor): a mask tensor for streaming model
            Torch 1.0.1
            tensor([[1., 1., 0., 0.],
                    [0., 1., 1., 0.],
                    [0., 0., 1., 1.]])
            Torch 1.4.1
            tensor([[True., True., False., False.],
                    [False., True., True., False.],
                    [False., False., True., True.]])
    """
    chunk_start_idx = torch.Tensor(
        chunk_start_idx
    ).long()  # first idx of each chunk, such as [0,18,36,48].
    start_pad = torch.nn.functional.pad(
        chunk_start_idx, (1, 0)
    )  # append 0 to the beginning, so it becomes [0, 0, 18, 36, 48]
    end_pad = torch.nn.functional.pad(
        chunk_start_idx, (0, 1), value=x_len
    )  # append x_len to the end, so it becomes [0,18,36,48, x_len]
    seq_range = torch.arange(0, x_len).unsqueeze(-1)  # seq_range size: [x_len, 1]
    idx = ((seq_range < end_pad) & (seq_range >= start_pad)).nonzero()[:, 1]  # idx size: [x_len]
    boundary = end_pad[idx]  # boundary size: [x_len]
    seq_range_expand = (
        torch.arange(0, x_len).unsqueeze(0).expand(x_len, -1)
    )  # seq_range_expand size [x_len, x_len]
    idx_left = idx - left_window
    idx_left[idx_left < 0] = 0
    boundary_left = start_pad[idx_left]
    mask_left = seq_range_expand >= boundary_left.unsqueeze(-1)
    idx_right = idx + right_window
    idx_right[idx_right > len(chunk_start_idx)] = len(chunk_start_idx)
    boundary_right = end_pad[idx_right]
    mask_right = seq_range_expand < boundary_right.unsqueeze(-1)
    return mask_left & mask_right

class Swish(nn.Module):
    """Implement Swish activation module.
    From https://arxiv.org/pdf/2005.03191.pdf

    """

    def __init__(self) -> None:
        super().__init__()
        self.act_fn = nn.Sigmoid()

    def forward(self, x: Tensor) -> Tensor:
        """Apply Swish function

        Args:
            x: torch.Tensor
                Input.
        """
        return x * self.act_fn(x)

class GLU(nn.Module):
    """Implement Gated Linear Unit (GLU) module"""

    def __init__(self, dim: int = -1, act_name: str = "sigmoid") -> None:
        super().__init__()
        self.dim = dim
        self.act_name = act_name.lower()

        if self.act_name == "relu":
            self.act_fn = nn.ReLU(inplace=True)
        elif self.act_name == "gelu":
            self.act_fn = nn.GELU()
        elif self.act_name == "swish":
            self.act_fn = Swish()
        elif self.act_name == "sigmoid":
            self.act_fn = nn.Sigmoid()
        else:
            self.act_fn = nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        """GLU forward
        Apply Swish function on the first half of input matrices
        with sigmoid of the second half.

        Args:
            x: torch.Tensor
                Input.

        """
        half_x, gate = x.chunk(2, dim=self.dim)
        return half_x * self.act_fn(gate)

# TODO: Abdel, this can be improved using GLU module
class GLUPointWiseConv(nn.Module):
    """GLUPointWiseConv module
    used for conformer architecture,
    for more details see:
    https://arxiv.org/pdf/2005.08100v1.pdf

    Args:
        input_dim: int
            input channel size.
        output_dim: int
            output channel size.
        kernel_size: int
            kernel size
        glu_type: str, optional
            activation function one of
             ["sigmoid", "relu", "gelu"]
              default "sigmoid".
        bias_in_glu: bool, optional
            use addtive bias in glu
        causal: bool, optional
            if set to True, padding is set to the half of
             kernel size, ie, convolution can't see future frames.
              default False.

    """

    def __init__(
        self, input_dim, output_dim, kernel_size, glu_type="sigmoid", bias_in_glu=True, causal=False
    ):
        super().__init__()

        self.glu_type = glu_type
        self.output_dim = output_dim
        self.bias_in_glu = bias_in_glu
        if causal:
            self.ext_pw_conv_1d = nn.Conv1d(
                input_dim, output_dim * 2, kernel_size, 1, padding=(kernel_size - 1)
            )
        else:
            self.ext_pw_conv_1d = nn.Conv1d(
                input_dim, output_dim * 2, kernel_size, 1, padding=(kernel_size - 1) // 2
            )

        if glu_type == "sigmoid":
            self.glu_act = nn.Sigmoid()
        elif glu_type == "relu":
            self.glu_act = nn.ReLU()
        elif glu_type == "gelu":
            self.glu_act = nn.GELU()
        elif glu_type == "swish":
            self.glu_act = Swish()
        else:
            raise ValueError(f"Unsupported activation type {self.glu_act}")

        if bias_in_glu:
            self.b1 = nn.Parameter(torch.zeros(1, output_dim, 1))
            self.b2 = nn.Parameter(torch.zeros(1, output_dim, 1))

    def forward(self, x):
        """
        Args:
            x: torch.Tensor
                input tensor
        """
        # to be consistent with GLULinear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
        x = x.permute([0, 2, 1])
        x = self.ext_pw_conv_1d(x)
        if self.glu_type == "bilinear":
            if self.bias_in_glu:
                x = (x[:, 0 : self.output_dim, :] + self.b1) * (
                    x[:, self.output_dim : self.output_dim * 2, :] + self.b2
                )
            else:
                x = (x[:, 0 : self.output_dim, :]) * (
                    x[:, self.output_dim : self.output_dim * 2, :]
                )
        else:
            if self.bias_in_glu:
                x = (x[:, 0 : self.output_dim, :] + self.b1) * self.glu_act(
                    x[:, self.output_dim : self.output_dim * 2, :] + self.b2
                )
            else:
                x = (x[:, 0 : self.output_dim, :]) * self.glu_act(
                    x[:, self.output_dim : self.output_dim * 2, :]
                )

        x = x.permute([0, 2, 1])
        return x


class DepthWiseSeperableConv1d(nn.Module):
    """DepthWiseSeperableConv1d module used in Convnet module
    for the conformer, for more details see:
    https://arxiv.org/pdf/2005.08100v1.pdf

    Args:
        input_dim: int
            input channel size.
        depthwise_seperable_out_channel: int
            if set different to 0, the number of depthwise_seperable_out_channel
             will be used as a channel_out of the second conv1d layer.
             otherwise, it equal to 0, the second conv1d layer is skipped.
        kernel_size: int
            kernel_size
        depthwise_multiplier: int
            number of input_dim channels duplication. this value
            will be used to compute the hidden channels of the Conv1D.
        padding: int, optional
            padding for the conv1d,
             default: 0.

    """

    def __init__(
        self,
        input_dim,
        depthwise_seperable_out_channel,
        kernel_size,
        depthwise_multiplier,
        padding=0,
    ):
        super().__init__()

        self.dw_conv = nn.Conv1d(
            input_dim,
            input_dim * depthwise_multiplier,
            kernel_size,
            1,
            padding=padding,
            groups=input_dim,
        )

        if depthwise_seperable_out_channel != 0:
            self.pw_conv = nn.Conv1d(
                input_dim * depthwise_multiplier, depthwise_seperable_out_channel, 1, 1, 0
            )
        else:
            self.pw_conv = nn.Identity()
        self.depthwise_seperable_out_channel = depthwise_seperable_out_channel

    def forward(self, x):
        """

        Args:
            x: torch.Tensor
                input tensor
        """
        x = self.dw_conv(x)
        if self.depthwise_seperable_out_channel != 0:
            x = self.pw_conv(x)
        return x


class ConvModule(nn.Module):
    """ConvModule Module for the conformer block.
    for more details see:
    https://arxiv.org/pdf/2005.08100v1.pdf

    Args:
        input_dim: int
            input channel size.
        ext_pw_out_channel: int
            if > 0, ext_pw_out_channel is a dim channel size
             for the last pointwise conv after swish activation.
        depthwise_seperable_out_channel: int
            if set different to 0, the number of depthwise_seperable_out_channel
             will be used as a channel_out of the second conv1d layer.
             otherwise, it equal to 0, the second conv1d layer is skipped.
        ext_pw_kernel_size: int
            kernel size of the conv pointwise of the conformer.
        kernel_size: int
            kernel size.
        depthwise_multiplier: int
            number of input_dim channels duplication. this value
             will be used to compute the hidden channels of the Conv1D.
        dropout_rate: float
            dropout rate.
        causal: bool, optional
            if set to True, convolution have no access
             to future frames. default False.
        batch_norm: bool, optional
            if set to True, apply batchnorm before activation.
            default False
        chunk_se: int, optional
            0 for offline SE.
            1 for streaming SE, where mean is computed
             by accumulated history until current chunk_se.
            2 for streaming SE, where mean is computed
             by only the current chunk.
        chunk_size: int, optional
            chunk size for cnn. default 18
        activation: str, optional
            activation function used in ConvModule,
            default: "relu".
        glu_type: str, optional
            activation function used for the glu,
            default: "sigmoid".
        bias_in_glu: bool, optional
            if set to True, use additive bias in the weight module
             before GLU.
        linear_glu_in_convm: bool, optional
            if set to True, use GLULinear module,
             otherwise, used GLUPointWiseConv module.
              default to False.
        export: bool, optional,
            if set to True, padding is equal to 0.  This is for inference,
             or onnx export.  Typically this is set by the export program or
             the decoder program, and it isn't present in your config file.
             default False
    """

    def __init__(
        self,
        input_dim,
        ext_pw_out_channel,
        depthwise_seperable_out_channel,
        ext_pw_kernel_size,
        kernel_size,
        depthwise_multiplier,
        dropout_rate,
        causal=False,
        batch_norm=False,
        chunk_se=0,
        chunk_size=18,
        activation="relu",
        glu_type="sigmoid",
        bias_in_glu=True,
        linear_glu_in_convm=False,
        export=False,
    ):
        super().__init__()
        self.layer_norm = nn.LayerNorm(input_dim)
        self.input_dim = input_dim
        self.ext_pw_out_channel = ext_pw_out_channel
        self.ext_pw_kernel_size = ext_pw_kernel_size
        self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
        self.glu_type = glu_type
        self.bias_in_glu = bias_in_glu
        self.linear_glu_in_convm = linear_glu_in_convm
        self.causal = causal

        self._add_ext_pw_layer()

        self.batch_norm = batch_norm
        self.kernel_size = kernel_size

        if batch_norm:
            self.bn_layer = nn.BatchNorm1d(input_dim)

        self.act = get_activation(activation)
        self.dropout = nn.Dropout(dropout_rate)
        self.export = export

        if causal:
            if export:  # Inference only.
                padding = 0  # A cache is concatenated to the left. No padding in the kernel.
            else:
                # Training only. Padding will be added symmetrically on both sides.
                # After convolution, clip off kernel_size-1 points on the right.
                padding = kernel_size - 1
        else:
            padding = (kernel_size - 1) // 2

        self.dw_sep_conv_1d = DepthWiseSeperableConv1d(
            input_dim,
            depthwise_seperable_out_channel,
            kernel_size,
            depthwise_multiplier,
            padding=padding,
        )

        if depthwise_seperable_out_channel != 0:
            if input_dim != depthwise_seperable_out_channel:
                self.ln2 = nn.Linear(depthwise_seperable_out_channel, input_dim)
        else:
            if depthwise_multiplier != 1:
                self.ln2 = nn.Linear(input_dim * depthwise_multiplier, input_dim)

    def _add_ext_pw_layer(self):
        """
        This function is an extension of __init__ function
        and dedicated to the convolution module creation
        of the conformer.
        """
        self.ln1 = self.glu = self.bn_layer = self.ext_pw_conv_1d = nn.Identity()  # jit hacks.
        self.squeeze_excitation = nn.Identity()  # jit.
        self.apply_ln1 = self.fix_len1 = False  # jit.

        if self.ext_pw_out_channel != 0:
            if self.causal:
                self.ext_pw_conv_1d = nn.Conv1d(
                    self.input_dim,
                    self.ext_pw_out_channel,
                    self.ext_pw_kernel_size,
                    1,
                    padding=(self.ext_pw_kernel_size - 1),
                )
                if self.ext_pw_kernel_size > 1:
                    self.fix_len1 = True
                else:
                    self.fix_len1 = False
            else:
                self.ext_pw_conv_1d = nn.Conv1d(
                    self.input_dim,
                    self.ext_pw_out_channel,
                    self.ext_pw_kernel_size,
                    1,
                    padding=(self.ext_pw_kernel_size - 1) // 2,
                )
                self.fix_len1 = False

            if self.linear_glu_in_convm:
                self.glu = GLULinear(
                    self.input_dim, self.ext_pw_out_channel, self.glu_type, self.bias_in_glu
                )
            else:
                self.glu = GLUPointWiseConv(
                    self.input_dim,
                    self.ext_pw_out_channel,
                    self.ext_pw_kernel_size,
                    self.glu_type,
                    self.bias_in_glu,
                    self.causal,
                )

            if self.input_dim != self.ext_pw_out_channel:
                self.apply_ln1 = True
                self.ln1 = nn.Linear(self.ext_pw_out_channel, self.input_dim)
            else:
                self.apply_ln1 = False
        else:
            self.pw_conv_simplify_w = torch.nn.Parameter(torch.ones(3))
            self.pw_conv_simplify_b = torch.nn.Parameter(torch.zeros(3))

    def forward(self, x):
        """ConvModule Forward.

        Args:
            x: torch.Tensor
                input tensor.
        """
        x = self.layer_norm(x)

        if self.ext_pw_out_channel != 0:
            x = self.glu(x)
            if self.causal and self.ext_pw_kernel_size > 1:
                x = x[:, : -(self.ext_pw_kernel_size - 1), :]
            if self.apply_ln1:
                x = self.ln1(x)
        else:
            x_0 = x * self.pw_conv_simplify_w[0] + self.pw_conv_simplify_b[0]
            x_1 = x * self.pw_conv_simplify_w[1] + self.pw_conv_simplify_b[1]
            x = x_0 + x_1

        x = x.permute([0, 2, 1])

        x = self.dw_sep_conv_1d(x)
        if self.causal and self.kernel_size > 1:
            x = x[:, :, : -(self.kernel_size - 1)]
        if hasattr(self, "ln2"):
            x = x.permute([0, 2, 1])
            x = self.ln2(x)
            x = x.permute([0, 2, 1])
        if self.batch_norm:
            x = self.bn_layer(x)
        x = self.act(x)

        if self.ext_pw_out_channel != 0:
            x = self.ext_pw_conv_1d(x)
            if self.fix_len1:
                x = x[:, :, : -(self.ext_pw_kernel_size - 1)]

            if self.apply_ln1:
                x = x.permute([0, 2, 1])
                x = self.ln1(x)
                x = x.permute([0, 2, 1])

            x = x.permute([0, 2, 1])
        else:
            x = x.unsqueeze(1).permute([0, 1, 3, 2])
            x = x * self.pw_conv_simplify_w[2] + self.pw_conv_simplify_b[2]
            x = x.squeeze(1)

        x = self.dropout(x)
        return x

class GLULinear(nn.Module):
    """Linear + GLU module

    Args:
        input_dim: int
            input size
        output_dim: int
            output size.
        glu_type:
            activation function name used in glu module.
            default "sigmoid" (swish function).
        bias_in_glu: bool, optional
            If True, the addtive bias is added. Default False.
    """

    def __init__(
        self,
        input_dim,
        output_dim,
        glu_type="sigmoid",
        bias_in_glu=True,
    ):
        super().__init__()
        self.linear = nn.Linear(input_dim, output_dim * 2, bias_in_glu)
        self.glu_act = GLU(-1, glu_type)

    def forward(self, x):
        """GLULinear forward

        Args:
            x: torch.Tensor
                inpute tensor.
        """
        x = self.linear(x)
        return self.glu_act(x)

class FeedForward(nn.Module):
    """FeedForward Module.
    For more details see Conformer paper:
        https://arxiv.org/pdf/2005.08100.pdf

    Args:
        d_model: int
            input size.
        d_inner: int
            output size.
        dropout_rate: float,
            dropout rate.
        activation: str,
            activation function name,
            one of ["relu", "swish", "sigmoid"],
            sigmoid activation is only used with "glu_in_fnn=True",
            default "sigmoid".
        bias_in_glu: bool, optional
    """

    def __init__(
        self,
        d_model,
        d_inner,
        dropout_rate,
        activation="sigmoid",
        bias_in_glu=True,
    ):
        super().__init__()
        self.d_model = d_model
        self.d_inner = d_inner

        self.layer_norm = nn.LayerNorm(d_model)
        module = GLULinear(d_model, d_inner, activation, bias_in_glu)
        self.net = nn.Sequential(
            module,
            nn.Dropout(dropout_rate),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout_rate),
        )

    def forward(self, x):
        """FeedForward forward function.

        Args:
            x: torch.Tensor
                input tensor.
        """
        out = self.net(self.layer_norm(x))
    
        return out

#### positional encoding starts here
def _pre_hook(
    state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
    """Perform pre-hook in load_state_dict for backward compatibility.

    Note:
        We saved self.pe until v.0.5.2 but we have omitted it later.
        Therefore, we remove the item "pe" from `state_dict` for backward compatibility.

    """
    k = prefix + "pe"
    if k in state_dict:
        state_dict.pop(k)

class T5RelativeAttentionLogitBias(nn.Module):
    """
    This module implements the relative position bias described in Section 2.1 of
    the T5 paper: https://arxiv.org/pdf/1910.10683.pdf

    The Huggingface implementation is used as a reference
    https://github.com/huggingface/transformers/blob/v4.30.0/src/transformers/models/t5/modeling_t5.py#L435

    Modifies attention as Q*K^T + B, where B is a learned scalar bias based on relative position
    of the query and key. It is HxNxN, where H is the number of heads, N is the sequence length.

    I've made these modifications to the original T5 bias:
    - Skipping of the bucketing step. Original T5 bias converted rel position distances into
      logarithmically increasing buckets. This is supposed to help with length generalization.
    - I just directly use rel position index as bias values, as we don't need length
      generalization (40s max is good enough for ASR encoder), and it keeps ONNX export simple.
    - I've also extended it so that biases can be asymmetric, the default implementation treats
      L->R and R->L the same. Asymmetric was found to yield better results in my experiments.

    Args:
        num_heads: int
            Number of attention heads
        num_buckets: int
            Number of buckets to use for relative attention bias. This is the size of the learnable
            bias parameter. Bucketing is not yet supported, so this defaults to -1 which means
            no bucketing is used (max_distance determines size of bias param).
        max_distance: int
            Maximum distance to use for relative attention bias. With num_buckets=-1, this directly
            controls the max size of the bias parameter. When num_buckets > 0 is supported, this
            will control the maximum distance for logarithmic bucketing after which all positions
            are in the same bucket.
        symmetric: bool
            Whether to use symmetric or asymmetric biases. symmetric=False uses 2x number of bias
            params to distinguish L->R from R->L. This was found to be better for the encoder.
    """

    def __init__(self, num_heads, num_buckets=-1, max_distance=1000, symmetric=False):
        super().__init__()
        self.num_heads = num_heads
        self.num_buckets = num_buckets
        self.max_distance = max_distance
        self.symmetric = symmetric
        self._skip_bucketing = self.num_buckets < 0
        if self._skip_bucketing:
            self.num_buckets = max_distance
        else:
            raise NotImplementedError("T5 attention bias with bucketed positions is not yet tested")
        if not self.symmetric:
            self.num_buckets *= 2
        self.bias_values = nn.Embedding(self.num_buckets, self.num_heads)

    def forward(self, x):
        # instantiate bias compatible with shape of x
        maxpos = x.size(1)
        context_position = torch.arange(maxpos, device=x.device, dtype=torch.long)[:, None]
        memory_position = torch.arange(maxpos, device=x.device, dtype=torch.long)[None, :]
        relative_position = memory_position - context_position
        # clipping to a maximum distance using ops that play well with ONNX export
        relative_position = relative_position.masked_fill(
            relative_position < -self.max_distance, -self.max_distance
        )
        relative_position = relative_position.masked_fill(
            relative_position > self.max_distance - 1, self.max_distance - 1
        )

        # mapping from relative position to index in the bias parameter
        if self._skip_bucketing:
            bias_idx = relative_position
        else:
            bias_idx = self._bucket_relative_position(relative_position)
        if self.symmetric:
            bias_idx = bias_idx.abs()
        else:
            bias_idx += self.num_buckets // 2

        t5_rel_att_bias = self.bias_values(bias_idx)  # [L, L, H]
        t5_rel_att_bias = t5_rel_att_bias.permute(2, 0, 1).unsqueeze(0)  # [1, H, L, L]

        return t5_rel_att_bias

    def _bucket_relative_position(self, relative_position):
        # this is a placeholder (isn't tested, likely buggy) using HuggingFace implem as a reference
        # this also needs to be extended to support asymmetric +/- ve positions
        relative_buckets = 0
        if not self.causal:
            num_buckets //= 2
            relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
            relative_position = torch.abs(relative_position)
        else:
            relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
        # now relative_position is in the range [0, inf)

        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
        is_small = relative_position < max_exact

        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
        relative_position_if_large = max_exact + (
            torch.log(relative_position.float() / max_exact)
            / math.log(self.max_distance / max_exact)
            * (num_buckets - max_exact)
        ).to(torch.long)
        relative_position_if_large = torch.min(
            relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
        )

        relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
        return relative_buckets

class AbsolutePositionalEncoding(nn.Module):
    """Absolute Positional encoding module.
    This module implement Absolute sinusoidal positional encoding
    from: https://arxiv.org/pdf/1706.03762.pdf

    Args:
        d_model: int
            Input embedding size.
        dropout_rate: float
            dropout rate
        max_len: int, optional
            Maximum input length sequence, Default 5000

    """

    def __init__(self, d_model, dropout_rate, max_len=5000):
        """Construct an PositionalEncoding object."""
        super().__init__()
        self.d_model = d_model
        self.xscale = math.sqrt(self.d_model)
        self.dropout = torch.nn.Dropout(p=dropout_rate)
        self.pe = None
        self.extend_pe(torch.tensor(0.0).expand(1, max_len))
        self._register_load_state_dict_pre_hook(_pre_hook)

    def extend_pe(self, x):
        """Reset the positional encodings.

        Args:
            x: torch.Tensor
        """
        if self.pe is not None:
            if self.pe.size(1) >= x.size(1):
                if self.pe.dtype != x.dtype or self.pe.device != x.device:
                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return
        pe = torch.zeros(x.size(1), self.d_model)
        position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, self.d_model, 2, dtype=torch.float32)
            * -(math.log(10000.0) / self.d_model)
        )
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.pe = pe.to(device=x.device, dtype=x.dtype)

    def forward(self, x: torch.Tensor):
        """Add positional encoding.

        Args:
            x: torch.Tensor
                Input tensor. shape is (batch, time, ...)

        Returns:
            torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)

        """
        self.extend_pe(x)
        x = x * self.xscale + self.pe[:, : x.size(1)]
        return self.dropout(x)

#### forward embedding layers starts here

@backoff.on_exception(backoff.expo, Exception, max_tries=10)
def np_loadtxt_with_retry(filepath):
    """np.loadtxt with retry

    Args:
        filepath: str
            file path to the numpy array.
    """
    result = np.loadtxt(filepath, dtype="f")
    return result

class MeanVarianceNormLayer(nn.Module):
    """Mean/variance normalization layer.

    Will substract mean and multiply input by inverted standard deviation.
    Typically used as a very first layer in a model.

    Args:
        input_size: int
            layer input size.
    """

    def __init__(self, input_size):
        super().__init__()
        self.input_size = input_size
        self.register_buffer("global_mean", torch.zeros(input_size))
        self.register_buffer("global_invstd", torch.ones(input_size))
        self.global_mean: Optional[Tensor]
        self.global_invstd: Optional[Tensor]

    def forward(self, input_: Tensor) -> Tensor:
        """MeanVarianceNormLayer Forward

        Args:
            input_: torch.Tensor
                input tensor.
        """
        return (input_ - self.global_mean) * self.global_invstd

    def load_mean_invstd(self, mean_file, invstd_file, cuside_features=False):
        """Load feature mean and variance used for normalization.

        Args:
            mean_file: str
                path to the feature mean statistics file.
            invstd_file: str
                path to the features inverted standard deviation
                 statistics file.
            cuside_features: bool
                Boolean that indicates CUSIDE is being used.
                The statistics of CUSIDE features are copied
                from the normal features
        """
        self.global_mean.data = torch.from_numpy(np_loadtxt_with_retry(mean_file))
        self.global_invstd.data = torch.from_numpy(np_loadtxt_with_retry(invstd_file))

        if cuside_features:
            self.global_mean.data = torch.cat((self.global_mean.data, self.global_mean.data), 0)
            self.global_invstd.data = torch.cat(
                (self.global_invstd.data, self.global_invstd.data), 0
            )

class CausalConv1D(nn.Conv1d):
    """
    A causal version of nn.Conv1d where each step would have limited access to locations on its right or left
    All arguments are the same as nn.Conv1d except padding.

    If padding is set None, then paddings are set automatically to make it a causal convolution where each location would not see any steps on its right.

    If padding is set as a list (size of 2), then padding[0] would be used as left padding and padding[1] as right padding.
    It would make it possible to control the number of steps to be accessible on the right and left.
    This mode is not supported when stride > 1. padding[0]+padding[1] should be equal to (kernel_size - 1).
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: Union[str, int] = 0,
        dilation: int = 1,
        groups: int = 1,
        bias: bool = True,
        padding_mode: str = "zeros",
        device=None,
        dtype=None,
    ) -> None:
        self.cache_drop_size = None
        if padding is None:
            self._left_padding = kernel_size - 1
            self._right_padding = stride - 1
        else:
            if stride != 1 and padding != kernel_size - 1:
                raise ValueError("No striding allowed for non-symmetric convolutions!")
            if isinstance(padding, int):
                self._left_padding = padding
                self._right_padding = padding
            elif (
                isinstance(padding, list)
                and len(padding) == 2
                and padding[0] + padding[1] == kernel_size - 1
            ):
                self._left_padding = padding[0]
                self._right_padding = padding[1]
            else:
                raise ValueError(f"Invalid padding param: {padding}!")

        self._max_cache_len = self._left_padding

        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=0,
            dilation=dilation,
            groups=groups,
            bias=bias,
            padding_mode=padding_mode,
            device=device,
            dtype=dtype,
        )

    def update_cache(self, x, cache=None):
        if cache is None:
            new_x = F.pad(x, pad=(self._left_padding, self._right_padding))
            next_cache = cache
        else:
            new_x = F.pad(x, pad=(0, self._right_padding))
            new_x = torch.cat([cache, new_x], dim=-1)
            if self.cache_drop_size > 0:
                next_cache = new_x[:, :, : -self.cache_drop_size]
            else:
                next_cache = new_x
            next_cache = next_cache[:, :, -cache.size(-1) :]
        return new_x, next_cache

    def forward(self, x, cache=None):
        x, cache = self.update_cache(x, cache=cache)
        x = super().forward(x)
        if cache is None:
            return x
        else:
            return x, cache


class CausalConv2D(nn.Conv2d):
    """
    A causal version of nn.Conv2d where each location in the 2D matrix would have no access to locations on its right or down
    All arguments are the same as nn.Conv2d except padding which should be set as None
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        stride: int = 1,
        padding: Union[str, int] = 0,
        dilation: int = 1,
        groups: int = 1,
        bias: bool = True,
        padding_mode: str = "zeros",
        device=None,
        dtype=None,
    ) -> None:
        if padding is not None:
            raise ValueError("Argument padding should be set to None for CausalConv2D.")
        self._left_padding = kernel_size - 1
        self._right_padding = stride - 1

        padding = 0
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            dilation,
            groups,
            bias,
            padding_mode,
            device,
            dtype,
        )

    def forward(
        self,
        x,
    ):
        if self.training:
            x = F.pad(
                x,
                pad=(
                    self._left_padding,
                    self._right_padding,
                    self._left_padding,
                    self._right_padding,
                ),
            )
        else:
            x = F.pad(
                x,
                pad=(self._left_padding, self._right_padding, 0, 0),
            )
        x = super().forward(x)
        return x


class NemoConvSubsampling(torch.nn.Module):
    """Convlutional subsampling module, taken from NeMo ASR
    (https://github.com/NVIDIA/NeMo/blob/b367413645d5c72db3c2c96e46e95a34501479cf/nemo/collections/asr/parts/submodules/subsampling.py)

    Striding Subsampling: "Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for
    Speech Recognition" by Linhao Dong et al. (https://ieeexplore.ieee.org/document/8462506)


    Compared with the EncoderConv2D (`input_layer: custom`), this is a much simplified approach,
    and uses no LayerNorm and far fewer Conv2Ds.  Moreover, depthwise convolutions are used to reduce
    FLOPs, but the first layer is kept as a regular convolution so as not to degrade accuracy.

    `Striding` and `dw_striding` are the same except that the latter uses depthwise convolutions
    after the first layer, whereas the former does not.

    Args:
        subsampling_factor (int): Time reduction factor
        feat_in (int): size of the input features
        feat_out (int): size of the output features
        subsampling (str): The subsampling technique, choose from
            {"striding", "dw-striding", "striding_conv1d", "dw_striding_conv1d"}
        conv_channels (int): Number of channels for the convolution layers, default is 256.
        subsampling_conv_chunking_factor (int): Input chunking factor which can be -1 (no chunking)
            1 (auto) or a power of 2. Default is 1
        activation (Module): activation function, default is nn.ReLU()
        is_causal (bool): whether to use causal Conv1/2D, where each step will have limited access
            to locations on its right or left
    """

    def __init__(
        self,
        feat_in,
        feat_out,
        subsampling_factor=4,
        subsampling="dw_striding",
        conv_channels=256,
        subsampling_conv_chunking_factor=1,
        activation=nn.ReLU(),
        is_causal=False,
    ):
        super().__init__()
        self._subsampling = subsampling
        self._conv_channels = conv_channels
        self._feat_in = feat_in
        self._feat_out = feat_out

        if subsampling_factor % 2 != 0:
            raise ValueError("Sampling factor should be a multiply of 2!")
        self._sampling_num = int(math.log(subsampling_factor, 2))
        self.subsampling_factor = subsampling_factor
        self.is_causal = is_causal
        self.subsampling_causal_cond = subsampling in ("dw_striding", "striding", "striding_conv1d")

        if (
            subsampling_conv_chunking_factor != -1
            and subsampling_conv_chunking_factor != 1
            and subsampling_conv_chunking_factor % 2 != 0
        ):
            raise ValueError("subsampling_conv_chunking_factor should be -1, 1, or a power of 2")
        self.subsampling_conv_chunking_factor = subsampling_conv_chunking_factor

        in_channels = 1
        layers = []

        if subsampling == "dw_striding":
            self._stride = 2
            self._kernel_size = 3
            self._ceil_mode = False

            if self.is_causal:
                self._left_padding = self._kernel_size - 1
                self._right_padding = self._stride - 1
                self._max_cache_len = subsampling_factor + 1
            else:
                self._left_padding = (self._kernel_size - 1) // 2
                self._right_padding = (self._kernel_size - 1) // 2
                self._max_cache_len = 0

            # Layer 1
            if self.is_causal:
                layers.append(
                    CausalConv2D(
                        in_channels=in_channels,
                        out_channels=conv_channels,
                        kernel_size=self._kernel_size,
                        stride=self._stride,
                        padding=None,
                    )
                )
            else:
                layers.append(
                    torch.nn.Conv2d(
                        in_channels=in_channels,
                        out_channels=conv_channels,
                        kernel_size=self._kernel_size,
                        stride=self._stride,
                        padding=self._left_padding,
                    )
                )
            in_channels = conv_channels
            layers.append(activation)

            for i in range(self._sampling_num - 1):
                if self.is_causal:
                    layers.append(
                        CausalConv2D(
                            in_channels=in_channels,
                            out_channels=in_channels,
                            kernel_size=self._kernel_size,
                            stride=self._stride,
                            padding=None,
                            groups=in_channels,
                        )
                    )
                else:
                    layers.append(
                        torch.nn.Conv2d(
                            in_channels=in_channels,
                            out_channels=in_channels,
                            kernel_size=self._kernel_size,
                            stride=self._stride,
                            padding=self._left_padding,
                            groups=in_channels,
                        )
                    )

                layers.append(
                    torch.nn.Conv2d(
                        in_channels=in_channels,
                        out_channels=conv_channels,
                        kernel_size=1,
                        stride=1,
                        padding=0,
                        groups=1,
                    )
                )
                layers.append(activation)
                in_channels = conv_channels

        elif subsampling == "striding":
            self._stride = 2
            self._kernel_size = 3
            self._ceil_mode = False

            if self.is_causal:
                self._left_padding = self._kernel_size - 1
                self._right_padding = self._stride - 1
                self._max_cache_len = subsampling_factor + 1
            else:
                self._left_padding = (self._kernel_size - 1) // 2
                self._right_padding = (self._kernel_size - 1) // 2
                self._max_cache_len = 0

            for i in range(self._sampling_num):
                if self.is_causal:
                    layers.append(
                        CausalConv2D(
                            in_channels=in_channels,
                            out_channels=conv_channels,
                            kernel_size=self._kernel_size,
                            stride=self._stride,
                            padding=None,
                        )
                    )
                else:
                    layers.append(
                        torch.nn.Conv2d(
                            in_channels=in_channels,
                            out_channels=conv_channels,
                            kernel_size=self._kernel_size,
                            stride=self._stride,
                            padding=self._left_padding,
                        )
                    )
                layers.append(activation)
                in_channels = conv_channels

        elif subsampling == "striding_conv1d":
            in_channels = feat_in

            self._stride = 2
            self._kernel_size = 5
            self._ceil_mode = False

            if self.is_causal:
                self._left_padding = self._kernel_size - 1
                self._right_padding = self._stride - 1
                self._max_cache_len = subsampling_factor + 1
            else:
                self._left_padding = (self._kernel_size - 1) // 2
                self._right_padding = (self._kernel_size - 1) // 2
                self._max_cache_len = 0

            for i in range(self._sampling_num):
                if self.is_causal:
                    layers.append(
                        CausalConv1D(
                            in_channels=in_channels,
                            out_channels=feat_out if self._sampling_num == i + 1 else conv_channels,
                            kernel_size=self._kernel_size,
                            stride=self._stride,
                            padding=None,
                        )
                    )
                else:
                    layers.append(
                        torch.nn.Conv1d(
                            in_channels=in_channels,
                            out_channels=feat_out if self._sampling_num == i + 1 else conv_channels,
                            kernel_size=self._kernel_size,
                            stride=self._stride,
                            padding=self._left_padding,
                        )
                    )
                layers.append(activation)
                in_channels = conv_channels

        elif subsampling == "dw_striding_conv1d":
            in_channels = feat_in

            self._stride = 2
            self._kernel_size = 5
            self._ceil_mode = False

            self._left_padding = (self._kernel_size - 1) // 2
            self._right_padding = (self._kernel_size - 1) // 2

            # Layer 1
            layers.extend(
                [
                    torch.nn.Conv1d(
                        in_channels=in_channels,
                        out_channels=in_channels,
                        kernel_size=self._kernel_size,
                        stride=self._stride,
                        padding=self._left_padding,
                        groups=in_channels,
                    ),
                    torch.nn.Conv1d(
                        in_channels=in_channels,
                        out_channels=feat_out if self._sampling_num == 1 else conv_channels,
                        kernel_size=1,
                        stride=1,
                        padding=0,
                        groups=1,
                    ),
                ]
            )
            in_channels = conv_channels
            layers.append(activation)

            for i in range(self._sampling_num - 1):
                layers.extend(
                    [
                        torch.nn.Conv1d(
                            in_channels=in_channels,
                            out_channels=in_channels,
                            kernel_size=self._kernel_size,
                            stride=self._stride,
                            padding=self._left_padding,
                            groups=in_channels,
                        ),
                        torch.nn.Conv1d(
                            in_channels=in_channels,
                            out_channels=feat_out if self._sampling_num == i + 2 else conv_channels,
                            kernel_size=1,
                            stride=1,
                            padding=0,
                            groups=1,
                        ),
                    ]
                )
                layers.append(activation)
                in_channels = conv_channels

        else:
            raise ValueError(f"Not valid sub-sampling: {subsampling}!")

        if subsampling in ["dw_striding", "striding"]:
            in_length = torch.tensor(feat_in, dtype=torch.float)
            out_length = calc_length(
                lengths=in_length,
                all_paddings=self._left_padding + self._right_padding,
                kernel_size=self._kernel_size,
                stride=self._stride,
                ceil_mode=self._ceil_mode,
                repeat_num=self._sampling_num,
            )
            self.out = torch.nn.Linear(conv_channels * int(out_length), feat_out)
            self.conv2d_subsampling = True
        elif subsampling in ["striding_conv1d", "dw_striding_conv1d"]:
            self.out = None
            self.conv2d_subsampling = False
        else:
            raise ValueError(f"Not valid sub-sampling: {subsampling}!")

        self.conv = torch.nn.Sequential(*layers)

    def get_sampling_frames(self):
        return [1, self.subsampling_factor]

    def get_streaming_cache_size(self):
        return [0, self.subsampling_factor + 1]

    def forward(self, x, mask):
        """
        Forward method for NeMo subsampling.

        Args:
            x[Batch, Time, Filters]: torch.Tensor
                input tensor
            x_mask: torch.Tensor
                input mask

        Returns:
            x: torch.Tensor
                Resulting tensor from subsampling (B, T // time_reduction_factor, feat_out)
            pad_mask: torch.Tensor
                tensor of padded hidden state sequences (B, 1, T // time_reduction_factor)
        """
        # Unsqueeze Channel Axis
        if self.conv2d_subsampling:
            x = x.unsqueeze(1)
        # Transpose to Channel First mode
        else:
            x = x.transpose(1, 2)

        # split inputs if chunking_factor is set
        if self.subsampling_conv_chunking_factor != -1 and self.conv2d_subsampling:
            if self.subsampling_conv_chunking_factor == 1:
                # if subsampling_conv_chunking_factor is 1, we split only if needed
                # avoiding a bug / feature limiting indexing of tensors to 2**31
                # see https://github.com/pytorch/pytorch/issues/80020
                x_ceil = 2**31 / self._conv_channels * self._stride * self._stride
                if torch.numel(x) > x_ceil:
                    need_to_split = True
                else:
                    need_to_split = False
            else:
                # if subsampling_conv_chunking_factor > 1 we always split
                need_to_split = True

            if need_to_split:
                x, success = self.conv_split_by_batch(x)
                if not success:  # if unable to split by batch, try by channel
                    if self._subsampling == "dw_striding":
                        x = self.conv_split_by_channel(x)
                    else:
                        x = self.conv(x)  # try anyway
            else:
                x = self.conv(x)
        else:
            x = self.conv(x)

        # Flatten Channel and Frequency Axes
        if self.conv2d_subsampling:
            b, c, t, f = x.size()
            x = self.out(x.transpose(1, 2).reshape(b, t, -1))
        # Transpose to Channel Last mode
        else:
            x = x.transpose(1, 2)

        if mask is None:
            return x, None

        max_audio_length = x.shape[1]
        feature_lens = mask.sum(1)
        padding_length = torch.ceil(feature_lens / self.subsampling_factor)
        if self.is_causal and self.subsampling_causal_cond:
            feature_lens_remainder = feature_lens % self.subsampling_factor
            padding_length[feature_lens_remainder != 1] += 1
        pad_mask = (
            torch.arange(0, max_audio_length, device=x.device).expand(padding_length.size(0), -1)
            < padding_length.unsqueeze(1)
        )
        return x, pad_mask.unsqueeze(1)

    def reset_parameters(self):
        # initialize weights
        if self._subsampling == "dw_striding":
            with torch.no_grad():
                # init conv
                scale = 1.0 / self._kernel_size
                dw_max = (self._kernel_size**2) ** -0.5
                pw_max = self._conv_channels**-0.5

                torch.nn.init.uniform_(self.conv[0].weight, -scale, scale)
                torch.nn.init.uniform_(self.conv[0].bias, -scale, scale)

                for idx in range(2, len(self.conv), 3):
                    torch.nn.init.uniform_(self.conv[idx].weight, -dw_max, dw_max)
                    torch.nn.init.uniform_(self.conv[idx].bias, -dw_max, dw_max)
                    torch.nn.init.uniform_(self.conv[idx + 1].weight, -pw_max, pw_max)
                    torch.nn.init.uniform_(self.conv[idx + 1].bias, -pw_max, pw_max)

                # init fc (80 * 64 = 5120 from https://github.com/kssteven418/Squeezeformer/blob/13c97d6cf92f2844d2cb3142b4c5bfa9ad1a8951/src/models/conformer_encoder.py#L487
                fc_scale = (self._feat_out * self._feat_in / self._sampling_num) ** -0.5
                torch.nn.init.uniform_(self.out.weight, -fc_scale, fc_scale)
                torch.nn.init.uniform_(self.out.bias, -fc_scale, fc_scale)

    def conv_split_by_batch(self, x):
        """Tries to split input by batch, run conv and concat results"""
        b, _, _, _ = x.size()
        if b == 1:  # can't split if batch size is 1
            return x, False

        if self.subsampling_conv_chunking_factor > 1:
            cf = self.subsampling_conv_chunking_factor
        else:
            # avoiding a bug / feature limiting indexing of tensors to 2**31
            # see https://github.com/pytorch/pytorch/issues/80020
            x_ceil = 2**31 / self._conv_channels * self._stride * self._stride
            p = math.ceil(math.log(torch.numel(x) / x_ceil, 2))
            cf = 2**p

        new_batch_size = b // cf
        if new_batch_size == 0:  # input is too big
            return x, False

        return torch.cat([self.conv(chunk) for chunk in torch.split(x, new_batch_size, 0)]), True

    def conv_split_by_channel(self, x):
        """For dw convs, tries to split input by time, run conv and concat results"""
        x = self.conv[0](x)  # full conv2D
        x = self.conv[1](x)  # activation

        for i in range(self._sampling_num - 1):
            _, c, t, _ = x.size()

            if self.subsampling_conv_chunking_factor > 1:
                cf = self.subsampling_conv_chunking_factor
            else:
                # avoiding a bug / feature limiting indexing of tensors to 2**31
                # see https://github.com/pytorch/pytorch/issues/80020
                p = math.ceil(math.log(torch.numel(x) / 2**31, 2))
                cf = 2**p

            new_c = int(c // cf)
            if new_c == 0:
                new_c = 1

            new_t = int(t // cf)
            if new_t == 0:
                new_t = 1

            x = self.channel_chunked_conv(self.conv[i * 3 + 2], new_c, x)  # conv2D, depthwise

            # splitting pointwise convs by time
            x = torch.cat(
                [self.conv[i * 3 + 3](chunk) for chunk in torch.split(x, new_t, 2)], 2
            )  # conv2D, pointwise
            x = self.conv[i * 3 + 4](x)  # activation
        return x

    def channel_chunked_conv(self, conv, chunk_size, x):
        """Performs channel chunked convolution"""

        ind = 0
        out_chunks = []
        for chunk in torch.split(x, chunk_size, 1):
            step = chunk.size()[1]

            if self.is_causal:
                chunk = nn.functional.pad(
                    chunk,
                    pad=(
                        self._kernel_size - 1,
                        self._stride - 1,
                        self._kernel_size - 1,
                        self._stride - 1,
                    ),
                )
                ch_out = nn.functional.conv2d(
                    chunk,
                    conv.weight[ind : ind + step, :, :, :],
                    bias=conv.bias[ind : ind + step],
                    stride=self._stride,
                    padding=0,
                    groups=step,
                )
            else:
                ch_out = nn.functional.conv2d(
                    chunk,
                    conv.weight[ind : ind + step, :, :, :],
                    bias=conv.bias[ind : ind + step],
                    stride=self._stride,
                    padding=self._left_padding,
                    groups=step,
                )
            out_chunks.append(ch_out)
            ind += step

        return torch.cat(out_chunks, 1)

    def change_subsampling_conv_chunking_factor(self, subsampling_conv_chunking_factor: int):
        if (
            subsampling_conv_chunking_factor != -1
            and subsampling_conv_chunking_factor != 1
            and subsampling_conv_chunking_factor % 2 != 0
        ):
            raise ValueError("subsampling_conv_chunking_factor should be -1, 1, or a power of 2")
        self.subsampling_conv_chunking_factor = subsampling_conv_chunking_factor


def calc_length(lengths, all_paddings, kernel_size, stride, ceil_mode, repeat_num=1):
    """Calculates the output length of a Tensor passed through a convolution or max pooling layer"""
    add_pad: float = all_paddings - kernel_size
    one: float = 1.0
    for i in range(repeat_num):
        lengths = torch.div(lengths.to(dtype=torch.float) + add_pad, stride) + one
        if ceil_mode:
            lengths = torch.ceil(lengths)
        else:
            lengths = torch.floor(lengths)
    return lengths.to(dtype=torch.int)

####  multihead attention starts here
class AttModule(nn.Module):
    """Attention abstraction module"""

    def __init__(self):
        super().__init__()
        self.export_mode = False

    def set_export(self, mode=True):
        """set the export mode"""
        self.export_mode = mode

    def forward(
        self,
        x: Tensor,
        memory: Optional[Tensor] = None,
        pos_emb: Optional[Tensor] = None,
        att_mask: Optional[Tensor] = None,
    ) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
        """AttModule forward

        Args:
            x: torch.Tensor
                input tensor.
            memory: torch.Tensor, optional
                memory tensor.
            pos_emb: torch.Tensor, optional
                positional encoder embedding.
            att_mask: torch.Tensor, optional
                attention mask tensor.
        """
        return x, memory, pos_emb, att_mask


class AttBlock(Block, AttModule):
    """Attention Block module to support both Attention and Block module."""

    def memory_dims(self, max_len=False):
        """memory dimensions"""
        return (1, self.input_size)

def masked_softmax(
    scores,
    mask: Optional[Tensor],
):
    if mask is not None:
        mask = mask.unsqueeze(1).eq(0)  # (batch, 1, time1, time2)
        scores = scores.masked_fill(mask, -torch.inf)
        attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)  # (batch, head, time1, time2)
    else:
        attn = torch.softmax(scores, dim=-1)  # (batch, head, time1, time2)
    return attn


class MultiHeadedAttention(nn.Module):
    """Multi-Head Attention layer with optional relative position embedding and GLU.

    Args:
        n_head: int
            the number of heads.
        n_feat: int
            input size features.
        dropout_rate: float
            dropout rate.
        use_LN: bool
            apply layer norm or not
        dropout_at_output: bool
            whether to apply dropout at output
        attention_inner_dim: int, optional
            the attention dimension used in the class,
            it can be different from the input dimension n_feat.
            default: -1 (equal to n_feat).
        use_pt_scaled_dot_product_attention: bool, optional
            if set True, use pytorch scaled dot product attention in training.  NOTE: this will NOT
            be used in ONNX decoding due to a lack of support.  In that case, we use the original
            attention implementation, which shows no regression.
            default: False.
        n_value: int, optional
            if set to values other than -1, use a different dimension for value. With the default value (i.e. -1), it is backward compatible.
        group_size: int, optional. must divide `n_head`
            if group_size > 1:       GQA
            if group_size = 1:       MHA
            if group_size = n_head:  MQA
    """

    inv_sqrt_d_k: torch.jit.Final[float]
    h: torch.jit.Final[int]
    h_k: torch.jit.Final[int]
    g: torch.jit.Final[int]

    def __init__(
        self,
        n_head,
        n_feat,
        dropout_rate,
        attention_inner_dim=-1,
        glu_type="swish",
        bias_in_glu=True,
        use_pt_scaled_dot_product_attention=False,
        n_value=-1,
        group_size: int = 1,
    ):
        super().__init__()
        if n_value == -1:
            n_value = n_feat
        if attention_inner_dim == -1:
            attention_inner_dim = n_feat
        assert attention_inner_dim % n_head == 0

        # We assume d_v always equals d_k
        self.d_k = attention_inner_dim // n_head
        self.inv_sqrt_d_k = 1.0 / math.sqrt(self.d_k)
        self.h = n_head
        assert n_head % group_size == 0, "group_size must divide n_head"
        self.g = group_size
        self.h_k = n_head // group_size
        
        self.linear_q = nn.Linear(n_feat, attention_inner_dim)
        self.linear_k = nn.Linear(n_feat, attention_inner_dim // group_size)
        self.linear_v = nn.Linear(n_value, attention_inner_dim // group_size)
        self.linear_out = nn.Linear(attention_inner_dim // group_size, n_value)
        
        self.attn = torch.jit.Attribute(None, Optional[Tensor])
        self.dropout = nn.Dropout(p=dropout_rate)
        self.dropout_rate = dropout_rate
        self.use_pt_scaled_dot_product_attention = use_pt_scaled_dot_product_attention

        if use_pt_scaled_dot_product_attention and group_size > 1:
            raise ValueError("Cannot use PT Scaled Attention with GQA")

        # Torchscript eager quantization.  Note that these functions below are
        # NOOPs and have very little impact on performance unless quantization is
        # enabled.
        self.quant_q = torch.ao.quantization.QuantStub()
        self.quant_x = torch.ao.quantization.QuantStub()
        self.dequant = torch.ao.quantization.DeQuantStub()
        self.ffunc = torch.ao.nn.quantized.FloatFunctional()

    def forward(
        self,
        query: Tensor,
        key: Tensor,
        value: Tensor,
        pos_k: Tensor,
        pos_v: Tensor,
        mask: Optional[Tensor],
        relative_attention_bias: Optional[Tensor] = None,
    ):
        """Compute 'Scaled Dot Product Attention'.

        Args:
            query: torch.Tensor
                query tensor (batch, time1, size)
            key: torch.Tensor
                key tensor (batch, time2, size)
            value: torch.Tensor
                value tensor (batch, time1, size)
            pos_k: torch.Tensor
                key tensor used for relative positional embedding.
            pos_v: torch.Tensor
                value tensor used for relative positional embedding.
            mask: torch.Tensor
                mask tensor (batch, time1, time2)
            relative_attention_bias: torch.Tensor
                bias added to attention logits w.r.t. relative positions (1, n_head, time1, time2)
        """
        n_batch = query.size(0)

        q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)  # (b, t, d)
        k = self.linear_k(key).view(n_batch, -1, self.h_k, self.d_k)  # (b, t, d)
        v = self.linear_v(value).view(n_batch, -1, self.h_k, self.d_k)
        q = (
            q.transpose(1, 2)
            if self.use_pt_scaled_dot_product_attention and not torch.jit.is_scripting()
            else q.transpose(1, 2) * self.inv_sqrt_d_k
        )
        k = k.transpose(1, 2)  # (batch, head_k, time2, d_k)
        v = v.transpose(1, 2)  # (batch, head_k, time2, d_k)
        
        if self.use_pt_scaled_dot_product_attention and not torch.jit.is_scripting():
            attn_mask = None
            if mask is not None:
                mask = mask.unsqueeze(1)
                if relative_attention_bias is not None:
                    attn_mask = mask + relative_attention_bias
                else:
                    attn_mask = mask
                if mask.dtype != q.dtype:
                    attn_mask = attn_mask.to(q.dtype)

            with torch.backends.cuda.sdp_kernel(
                enable_flash=True, enable_math=True, enable_mem_efficient=True
            ):
                x = torch.nn.functional.scaled_dot_product_attention(
                    q,
                    k,
                    v,
                    attn_mask=attn_mask,
                    dropout_p=self.dropout_rate,
                )
        else:
            if self.h != self.h_k:
                q = q.reshape(n_batch, self.g, self.h_k, -1, self.d_k)
                A = torch.einsum("b g h t d, b h s d -> b h t s", q, k)
            else:
                A = torch.matmul(q, k.transpose(-2, -1))
            if pos_k is not None:
                if self.h != self.h_k:
                    B = torch.einsum("b g h t d, t s d -> b h t s", q, pos_k)
                else:
                    reshape_q = (
                        q.contiguous().view(n_batch * self.h, -1, self.d_k).transpose(0, 1)
                    )  # (t1,nh,dk)
                    B = torch.matmul(reshape_q, pos_k.transpose(-2, -1))  # pos_k: (t1,dk,t2)
                    B = B.transpose(0, 1).view(n_batch, self.h, pos_k.size(0), pos_k.size(1))
                scores = A + B
            else:
                scores = A

            if relative_attention_bias is not None:
                scores = scores + relative_attention_bias

            attn = masked_softmax(scores, mask)  # (batch, head, time1, time2)

            self.attn = attn

            p_attn = self.dropout(attn)
            x = torch.matmul(p_attn.to(v.dtype), v)  # (batch, head, time1, d_k)
            if pos_v is not None:
                reshape_attn = (
                    p_attn.contiguous()
                    .view(n_batch * self.h, pos_v.size(0), pos_v.size(1))
                    .transpose(0, 1)
                )  # (t1, bh, t2)

                attn_v = (
                    torch.matmul(reshape_attn, pos_v)
                    .transpose(0, 1)
                    .contiguous()
                    .view(n_batch, self.h, pos_v.size(0), self.d_k)
                )
                x = x + attn_v
        x = (
            x.transpose(1, 2).contiguous().view(n_batch, -1, self.h_k * self.d_k)
        )  # (batch, time1, d_model)

        return self.linear_out(x)  # (batch, time1, d_model)


def unfold_tensor(xs_pad, max_seq_len):
    """
    For a given tensor with shape of (N, T, D), if sequence length T is longer than max_seq_len,
    this function unfold it to a (NT', max_seq_len, D) where T' is T // max_seq_len.
    Args:
        xs_pad: N, T, D
    """
    _, _, D = xs_pad.shape
    xs_pad = xs_pad.transpose(-1, -2) # convert to N, D, T
    # N x D x 1 x T => N x (D x max_seq_len) x T'
    xs_pad = F.unfold(
        xs_pad[..., None, :],
        kernel_size=(1, max_seq_len),
        stride=(1, max_seq_len),
    )

    new_bsz, _, slen = xs_pad.shape
    # N x D x max_seq_len x T'
    xs_pad = xs_pad.view(new_bsz, -1, max_seq_len, slen)
    # N x T' x max_seq_len x D
    xs_pad = xs_pad.permute(0, 3, 2, 1).contiguous()
    # NT' x max_seq_len x D
    xs_pad = xs_pad.view(-1, max_seq_len, D)
    return xs_pad

# conformer_encoder.py
class MultiSequential(torch.nn.Sequential):
    """Multi-input multi-output torch.nn.Sequential"""

    @torch.jit.ignore
    def forward(self, *args):
        """Forward method implementation."""
        for m in self:
            args = m(*args)
        return args

def repeat(repeat_num, module_gen_fn):
    """repeat module N times

    :param int repeat_num: repeat time
    :param function module_gen_fn: function to generate module
    :return: repeated modules
    :rtype: MultiSequential
    """
    return MultiSequential(*[module_gen_fn(i) for i in range(repeat_num)])

class ConformerEncoderLayer(nn.Module):
    """ConformerEncoder Layer module.
    for more details see conformer paper:
        https://arxiv.org/abs/2005.08100
    This module implement the Conformer block layer.

    Args:
        d_model: int
            attention dim.
        ext_pw_out_channel: int
            if > 0, ext_pw_out_channel is a dim channel size
             for the last pointwise conv after swish activation.
        depthwise_seperable_out_channel: int
            if set different to 0, the number of depthwise_seperable_out_channel
             will be used as a channel_out of the second conv1d layer.
             otherwise, it equal to 0, the second conv1d layer is skipped.
        depthwise_multiplier: int
            number of input_dim channels duplication. this value
             will be used to compute the hidden channels of the Conv1D.
        n_head: int
            the number of heads for multihead attention module.
        d_ffn: int
            output size of the feed_forward blocks.
        ext_pw_kernel_size: int
            kernel size of the conv pointwise of the conformer.
        kernel_size: int
            kernel size.
        dropout_rate: float
            dropout rate.
        causal: bool, optional
            if set to True, convolution have no access
             to future frames. default False.
        batch_norm: bool, optional
            if set to True, apply batchnorm before activation
            in ConvModule layer of the conformer.
            default False
        activation: str, optional
            activation function name,
            one of ["relu", "swish", "sigmoid"],
            sigmoid activation is only used with "glu_in_fnn=True",
            default "relu".
        chunk_se: int, optional
            0 for offline SE.
            1 for streaming SE, where mean is computed
             by accumulated history until current chunk_se.
            2 for streaming SE, where mean is computed
             by only the current chunk.
            default 0.
        chunk_size: int, optional
            chunk_size for cnn. default 18
        conv_activation: str, optional
            activation function used in ConvModule part
            of the conformer, default "relu".
        conv_glu_type: str, optional
            activation function used for the glu inside
            the ConvModule part of the conformer.
            default: "sigmoid".
        bias_in_glu: bool, optional
            if set to True, use additive bias in the weight module
             before GLU.
        linear_glu_in_convm: bool, optional
            if set to True, use GLULinear module,
             otherwise, used GLUPointWiseConv module.
              default to False.
        attention_innner_dim: int, otional
            if equal to -1, attention dim for linears k/q/v is
            equal to d_model. otherwise attention_innner_dim is used.
            default -1.
        attention_glu_type: str, optional
            activation function for glu used in the multihead attention,
             default "swish".
        activation_checkpointing: str, optional
            a dictionarry of {"module","interval","offload"}, where
                "module": str
                    accept ["transformer", "attention"] to select
                    which module should do activation checkpointing.
                "interval": int, default 1,
                    interval of applying activation checkpointing,
                    interval = 1 means that we apply checkpointing
                    on every layer (if activation), otherwise,
                    we apply it every x interval.
                "offload": bool, default False,
                    if set to True, we offload activation to cpu and
                    reload it during backward, otherwise,
                    we recalculate activation in backward.
            default "".
        export: bool, optional
            if set to True, it remove the padding from convolutional layers
             and allow the onnx conversion for inference.
              default False.
        use_pt_scaled_dot_product_attention: bool, optional
            if set to True, use pytorch's scaled dot product attention implementation in training.
        attn_group_sizes: int, optional
            the number of groups to use for attention, default 1 (Multi-Head Attention),
            1 = typical Multi-Head Attention,
            1 < attn_group_sizes < attention_heads = Grouped-Query Attention
            attn_group_sizes = attenion_heads = Multi-Query Attention
    """

    def __init__(
        self,
        d_model=512,
        ext_pw_out_channel=0,
        depthwise_seperable_out_channel=256,
        depthwise_multiplier=1,
        n_head=4,
        d_ffn=2048,
        ext_pw_kernel_size=1,
        kernel_size=3,
        dropout_rate=0.1,
        causal=False,
        batch_norm=False,
        activation="relu",
        chunk_se=0,
        chunk_size=18,
        conv_activation="relu",
        conv_glu_type="sigmoid",
        bias_in_glu=True,
        linear_glu_in_convm=False,
        attention_innner_dim=-1,
        attention_glu_type="swish",
        activation_checkpointing="",
        export=False,
        use_pt_scaled_dot_product_attention=False,
        attn_group_sizes: int = 1,
    ):
        super().__init__()

        self.feed_forward_in = FeedForward(
            d_model=d_model,
            d_inner=d_ffn,
            dropout_rate=dropout_rate,
            activation=activation,
            bias_in_glu=bias_in_glu,
        )

        self.self_attn = encoder_checkpoint_wrapper(
            activation_checkpointing,
            MultiHeadedAttention,
        )(
            MultiHeadedAttention(
                n_head,
                d_model,
                dropout_rate,
                attention_innner_dim,
                attention_glu_type,
                bias_in_glu,
                use_pt_scaled_dot_product_attention=use_pt_scaled_dot_product_attention,
                group_size=attn_group_sizes,
            )
        )
        self.conv = ConvModule(
            d_model,
            ext_pw_out_channel,
            depthwise_seperable_out_channel,
            ext_pw_kernel_size,
            kernel_size,
            depthwise_multiplier,
            dropout_rate,
            causal,
            batch_norm,
            chunk_se,
            chunk_size,
            conv_activation,
            conv_glu_type,
            bias_in_glu,
            linear_glu_in_convm,
            export=export,
        )

        self.feed_forward_out = FeedForward(
            d_model=d_model,
            d_inner=d_ffn,
            dropout_rate=dropout_rate,
            activation=activation,
            bias_in_glu=bias_in_glu,
        )

        self.layer_norm_att = nn.LayerNorm(d_model)
        self.layer_norm = nn.LayerNorm(d_model)

    def forward(
        self,
        x,
        pos_k,
        pos_v,
        mask,
        relative_attention_bias: Optional[Tensor] = None,
    ):
        """ConformerEncoder forward.

        Args:
            x: torch.Tensor
                input feature of shape (batch, max_time_in, size)
            pos_k: torch.Tensor
                positional key embedding.
            mask: torch.Tensor
                mask for x (batch, max_time_in)
            relative_attention_bias: Optional[torch.Tensor]
                bias added to attention logits w.r.t. relative positions (1, n_head, time1, time2)
        """
        x = x + 0.5 * self.feed_forward_in(x)
        norm_x = self.layer_norm_att(x)

        x = x + self.self_attn(
            norm_x,
            norm_x,
            norm_x,
            pos_k,
            pos_v,
            mask,
            relative_attention_bias=relative_attention_bias,
        )
        x = x + self.conv(x)
        x = x + 0.5 * self.feed_forward_out(x)

        out = self.layer_norm(x)

        return out, pos_k, pos_v, mask
        
class TransformerEncoderBase(abc.ABC, nn.Module):
    """The Base class for Transformer based encoders

    Please set causal = True in streaming model
    Args:
        input_size: int
            input feature dimension.
        chunk_size: int, list(int)
            Number of frames for each chunk
            This variable can take 2 forms:
            int:  Used for inference, or single chunk size training
            list(int) : Used only for variable chunk size training
            Some examples for the 2 cases:
            chunk_size = 12
            chunk_size = [6, 8, 12, 24]
        left_chunk: int, list(int)
            Number of chunks used for masking in streaming mode.
            This variable can take 2 forms:
            int:  Used for inference, or single chunk size training
            list(int) : Used only for variable chunk size training. When
            chunk_size is a list, left_chunk must be a list with same length.
            Some examples for the 2 cases:
            left_chunk = 6
            left_chunk = [12, 9, 6, 3]
        attention_dim: int, optional
            attention dimension. default 256.
        attention_heads: int, optional
            the number of heads. default 4
        input_layer: str, optional
            input layer type before Conformer,
            one of ["linear", "conv2d", "custom", "vgg2l", "embed"],
            default "conv2d"
        cnn_out: int, optional
            the number of CNN channels before Conformer.
            default -1.
        cnn_layer_norm: bool, optional
            layer norm between Conformer and the first CNN.
            default False.
        time_reduction: int, optional
            time reduction factor
            default 4
        dropout_rate: float, optional
            dropout rate. default 0.1
        padding_idx: int, optional
            padding index for input_layer=embed
            default -1
        relative_attention_bias_args: dict, optional
            use more efficient scalar bias-based relative multihead attention (Q*K^T + B)
            implemented in cmb.basics.embedding.[T5/ALiBi]RelativeAttentionLogitBias
            usage: relative_attention_bias_args={"type": t5/alibi}
            additional method-specific arguments can be provided (see transformer_base.py)
        positional_dropout_rate: float, optional
            dropout rate after positional encoding. default 0.0
        nemo_conv_settings: dict, optional
            A dictionary of settings for NeMo Subsampling.
            default None
        conv2d_extra_padding: str, optional
            Add extra padding in conv2d subsampling layers. Choices are
            (feat, feat_time, none, True).
            if True or feat_time, the extra padding is added into non full
            supraframe utts in batch.
            Default: none
        attention_group_size: int, optional
            the number of groups to use for attention, default 1 (Multi-Head Attention),
            1 = typical Multi-Head Attention,
            1 < attention_group_size < attention_heads = Grouped-Query Attention
            attention_group_size = attenion_heads = Multi-Query Attention
    """

    def __init__(
        self,
        input_size,
        chunk_size,
        left_chunk,
        attention_dim=256,
        attention_heads=4,
        input_layer="nemo_conv",
        cnn_out=-1,
        cnn_layer_norm=False,
        time_reduction=4,
        dropout_rate=0.0,
        padding_idx=-1,
        relative_attention_bias_args=None,
        positional_dropout_rate=0.0,
        nemo_conv_settings=None,
        conv2d_extra_padding: Literal["feat", "feat_time", "none", True] = "none",
        attention_group_size=1,
        encoder_embedding_config=None,
    ):
        super().__init__()
        self.input_size = input_size
        self.input_layer = input_layer
        self.chunk_size = chunk_size
        self.left_chunk = left_chunk
        self.attention_dim = attention_dim
        self.num_heads = attention_heads
        self.attention_group_size = attention_group_size
        self.time_reduction = time_reduction
        self.nemo_conv_settings = nemo_conv_settings
        self.encoder_embedding_config = encoder_embedding_config

        if self.input_layer == "nemo_conv":
            default_nemo_conv_settings = {
                "subsampling": "dw_striding",
                "subsampling_factor": self.time_reduction,
                "feat_in": input_size,
                "feat_out": attention_dim,
                "conv_channels": 256,
                "subsampling_conv_chunking_factor": 1,
                "activation": nn.ReLU(),
                "is_causal": False,
            }
            # Override any of the defaults with the incoming, user settings
            if nemo_conv_settings:
                default_nemo_conv_settings.update(nemo_conv_settings)
                for i in ["subsampling_factor", "feat_in", "feat_out"]:
                    assert (
                        i not in nemo_conv_settings
                    ), "{i} should be specified outside of the NeMo dictionary"

            self.embed = NemoConvSubsampling(
                **default_nemo_conv_settings,
            )
        else:
            raise ValueError("unknown input_layer: " + input_layer)

        self.pos_emb = AbsolutePositionalEncoding(attention_dim, positional_dropout_rate)

        self.relative_attention_bias_type = (
            relative_attention_bias_args.get("type") if relative_attention_bias_args else None
        )
        if self.relative_attention_bias_type == "t5":
            assert (
                self.num_heads % self.attention_group_size == 0
            ), "attention_group_size must divide n_head"
            self.relative_attention_bias_layer = T5RelativeAttentionLogitBias(
                self.num_heads // self.attention_group_size,
                max_distance=relative_attention_bias_args.get("t5_bias_max_distance", 1000),
                symmetric=relative_attention_bias_args.get("t5_bias_symmetric", False),
            )
        else:
            raise NotImplementedError

    
    def post_init(self, init_model_config):

        pretrained_speech_encoder_path = init_model_config.get('pretrained_speech_encoder_path', None)
        if pretrained_speech_encoder_path:
            model_state = torch.load(pretrained_speech_encoder_path, map_location="cpu")
            encoder_state_dict = {}
            for k, v in model_state.items():
                if "encoder." in k:
                    tmp_k = k.replace("encoder.", "")
                    encoder_state_dict[tmp_k] = v
            
            if hasattr(self, "encoder_embedding"):
                del self.encoder_embedding
            self.load_state_dict(encoder_state_dict)
        
        if not hasattr(self, "encoder_embedding"):
            self.encoder_embedding = MeanVarianceNormLayer(self.encoder_embedding_config["input_size"])
       
        mean_file = init_model_config.get('mean_file', None)
        invstd_file = init_model_config.get('invstd_file', None)
        if mean_file is not None and invstd_file is not None:
            self.encoder_embedding.load_mean_invstd(mean_file, invstd_file)

    def compute_lens_change(self, feature_lens):
        """feature_lens: int
        return updated feature lens.

        This used to return a different lambda function for each case that computed
        the right thing.  That does not work within Torchscript.  If you really
        need this to be faster, create nn.Module()-s for all the cases and return
        one of them.  Torchscript does support that.
        """
        if self.input_layer == "nemo_conv":
            # Handle the special causal case
            subsampling_causal_cond = self.nemo_conv_settings.get("subsampling", "dw_striding") in [
                "dw_striding",
                "striding",
                "striding_conv1d",
            ]
            is_causal = self.nemo_conv_settings.get("is_causal", False)
            if is_causal and subsampling_causal_cond:
                lens_change = (
                    torch.ceil(feature_lens / self.time_reduction).long()
                    if isinstance(feature_lens, Tensor)
                    else math.ceil(feature_lens / self.time_reduction)
                )
                feature_lens_remainder = feature_lens % self.time_reduction
                if isinstance(feature_lens, Tensor):
                    lens_change[feature_lens_remainder != 1] += 1
                elif feature_lens_remainder != 1:
                    lens_change += 1
                return lens_change
            ceil_func = math.ceil if isinstance(feature_lens, int) else torch.ceil
            return ceil_func(feature_lens / self.time_reduction)

    @abc.abstractmethod
    def forward(self):
        """Abstract forward method implementation."""

    def _chunk_size_selection(self, chunk_size=None, left_chunk=None):
        """If chunk size is a list, we will randomly select a chunk size."""

        if chunk_size is None:
            chunk_size = self.chunk_size
        if left_chunk is None:
            left_chunk = self.left_chunk
        if isinstance(chunk_size, list):
            # Variable chunk size during training
            chunk_size_index = int(torch.randint(low=0, high=len(chunk_size), size=(1,)))
            chunk_size_train_eff = chunk_size[chunk_size_index]
            if not isinstance(left_chunk, list):
                raise ValueError("Since chunk_size is a list, left_chunk must be a list")
            if len(left_chunk) != len(chunk_size):
                raise ValueError(
                    "The length of left_chunk must be the same as length of chunk_size."
                )
            left_chunk_train_eff = left_chunk[chunk_size_index]
        else:
            chunk_size_train_eff = chunk_size
            left_chunk_train_eff = left_chunk

        return chunk_size_train_eff, left_chunk_train_eff

    def _get_embed_class(self, embed):
        # pylint: disable=protected-access
        is_embed_using_act_chkpt = isinstance(embed, CheckpointWrapper)
        is_embed_fsdp_wrapped = isinstance(embed, FullyShardedDataParallel)
        embed_class = embed
        if is_embed_using_act_chkpt:
            embed_class = embed._checkpoint_wrapped_module
        if is_embed_fsdp_wrapped:
            embed_class = embed.module
        return embed_class

    def _forward_embeddings_core(self, input_tensor, masks):
        embed_class = self._get_embed_class(self.embed)
        assert isinstance(embed_class, NemoConvSubsampling)
        input_tensor, masks = self.embed(input_tensor, masks)    
        return input_tensor, masks

    def _position_embedding(self, input_tensor):
        pos_k = None
        pos_v = None
        if self.relative_attention_bias_layer is None:
            input_tensor = self.pos_emb(input_tensor)  # default to add abs sinusoid embedding
        return pos_k, pos_v

    def _streaming_mask(self, seq_len, batch_size, chunk_size, left_chunk):
        chunk_size_train_eff, left_chunk_train_eff = self._chunk_size_selection(
            chunk_size, left_chunk
        )

        # Create mask matrix for streaming
        # S stores start index. if chunksize is 18, s is [0,18,36,....]
        chunk_start_idx = np.arange(0, seq_len, chunk_size_train_eff)
        # avoid randomness when run evaluation or decoding
        if self.training and np.random.rand() > 0.5:
            # Either first or last chunk is not complete.
            # If only the last one is not complete, EOS is not effective
            chunk_start_idx = seq_len - chunk_start_idx
            chunk_start_idx = chunk_start_idx[::-1]
            chunk_start_idx = chunk_start_idx[:-1]
            chunk_start_idx = np.insert(chunk_start_idx, 0, 0)

        enc_streaming_mask = (
            adaptive_enc_mask(seq_len, chunk_start_idx, left_window=left_chunk_train_eff)
            .unsqueeze(0)
            .expand([batch_size, -1, -1])
        )
        return enc_streaming_mask

    def forward_embeddings(self, xs_pad, masks, chunk_size_nc=None, left_chunk_nc=None):
        """Forwarding the inputs through the top embedding layers

        Args:
            xs_pad: torch.Tensor
                input tensor
            masks: torch.Tensor
                input mask
            chunk_size_nc: (optional, default is None) chunk size for non-causal layers
            left_chunk_nc: (optional, default is None) # of left chunks for non-causal layers
        """
        # pylint: disable=R0915
        # get new lens.
        seq_len = int(self.compute_lens_change(xs_pad.shape[1]))
        if seq_len <= 0:
            raise ValueError(
                f"""The squence length after time reduction is invalid: {seq_len}.
                Your input feature is too short. Consider filtering out the very
                short sentence from data loader""",
            )

        batch_size = xs_pad.shape[0]

        enc_streaming_mask = self._streaming_mask(
            seq_len, batch_size, self.chunk_size, self.left_chunk
        )

        if xs_pad.is_cuda:
            enc_streaming_mask = enc_streaming_mask.cuda()
            xs_pad = xs_pad.cuda()

        input_tensor = xs_pad
        input_tensor, masks = self._forward_embeddings_core(input_tensor, masks)

        streaming_mask = enc_streaming_mask
        if streaming_mask is not None and masks is not None:
            hs_mask = masks & streaming_mask
        elif masks is not None:
            hs_mask = masks
        else:
            hs_mask = streaming_mask

        if chunk_size_nc is not None:
            enc_streaming_mask_nc = self._streaming_mask(
                seq_len, batch_size, chunk_size_nc, left_chunk_nc
            )
            if xs_pad.is_cuda:
                enc_streaming_mask_nc = enc_streaming_mask_nc.cuda()
            if masks is not None:
                hs_mask_nc = masks & enc_streaming_mask_nc
            else:
                hs_mask_nc = enc_streaming_mask_nc
        else:
            hs_mask_nc = None

        pos_k, pos_v = self._position_embedding(input_tensor)

        if chunk_size_nc is None:
            return input_tensor, pos_k, pos_v, hs_mask, masks
        return input_tensor, pos_k, pos_v, hs_mask, masks, hs_mask_nc

    def get_offset(self):
        """Returns offset used when retaining inputs for decoding.

        This is essentially, how many additional frames have to be added to
        the front-end CNN input to ensure it can produce a single output.
        So if the "padding" parameter is 0, typically offset will be > 0.
        """
        return get_offset(self.input_layer, self.time_reduction)


def get_offset(input_layer: str, time_reduction: int):
    """Get an offset. We will use the offset for determining #frames of a subsampled feature.

    Args:
        input_layer (str): Type of an input layer
        time_reduction (int): time reduction factor for downsampling a feature
    Returns:
        int: offset
    """
    if input_layer in ("conv2d", "nemo_conv") and time_reduction == 4:
        return 3
    if input_layer in ("conv2d",) and time_reduction == 6:
        return 1
    if input_layer in ("conv2d", "nemo_conv") and time_reduction == 8:
        return 7
    return 0


class ConformerEncoder(TransformerEncoderBase):
    """ConformerEncoder module.
    see original paper for more details:
        https://arxiv.org/abs/2005.08100

    Please set causal = True in streaming model
    Args:
        input_size: int
            input feature dimension.
        chunk_size: int, list(int)
            Number of frames for each chunk
            This variable can take 2 forms:
            int:  Used for inference, or single chunk size training
            list(int) : Used only for variable chunk size training
            Some examples for the 2 cases:
            chunk_size = 12
            chunk_size = [6, 8, 12, 24]
        left_chunk: int, list(int)
            Number of chunks used for masking in streaming mode.
            This variable can take 2 forms:
            int:  Used for inference, or single chunk size training
            list(int) : Used only for variable chunk size training. When
            chunk_size is a list, left_chunk must be a list with same length.
            Some examples for the 2 cases:
            left_chunk = 6
            left_chunk = [12, 9, 6, 3]
        left_chunk: int
            number of chunks used for masking in streaming mode.
        num_lang: int
            This parameter is used to store the number of languages in the lang_dict,
            only used for multiseed/multilingual models. default None.
        attention_dim: int, optional
            attention dimension. default 256.
        attention_heads: int, optional
            the number of heads. default 4
        linear_units:
            the number of units of position-wise feed forward.
            default 2048
        num_block:
            number of Transformer layer. default 6
        dropout_rate: float, optional
            dropout rate. default 0.1
        input_layer: str, optional
            input layer type before Conformer,
            one of ["linear", "conv2d", "custom", "vgg2l", "embed"],
            default "conv2d"
        causal: bool, optional
            if set to True, convolution have no access
             to future frames. default False.
        batch_norm: bool, optional
            if set to True, apply batchnorm before activation
            in ConvModule layer of the conformer.
            default False
        cnn_out: int, optional
            the number of CNN channels before Conformer.
            default -1.
        cnn_layer_norm: bool, optional
            layer norm between Conformer and the first CNN.
            default False.
        ext_pw_out_channel: int, optional
            the number of channel for CNN
            before depthwise_seperable_CNN.
            If 0 then use linear. default 0.
        ext_pw_kernel_size: int, optional
            kernel size of N before depthwise_seperable_CNN.
            only work for ext_pw_out_channel > 0.
            default 1
        depthwise_seperable_out_channel: int, optional
            the number of channel for
            depthwise_seperable_CNN.
            default 256.
        depthwise_multiplier: int, optional
            the number of multiplier for
            depthwise_seperable_CNN.
            default 1.
        chunk_se: int, optional
            0 for offline SE.
            1 for streaming SE, where mean is computed
             by accumulated history until current chunk_se.
            2 for streaming SE, where mean is computed
             by only the current chunk.
            default 0.
        kernel_size: int, optional
            the number of kernels for depthwise_seperable_CNN.
            default 3.
        activation: str, optional
            FeedForward block activation.
            one of ["relu", "swish", "sigmoid"]
            default "relu".
        conv_activation: str, optional
            activation function used in ConvModule part
            of the conformer, default "relu".
        conv_glu_type: str, otional
            activation used use glu in depthwise_seperable_CNN,
            default "sigmoid"
        bias_in_glu: bool, optional
            if set to True, use additive bias in the weight module
             before GLU. default True
        linear_glu_in_convm: bool, optional
            if set to True, use GLULinear module,
             otherwise, used GLUPointWiseConv module.
              default to False.
        attention_glu_type: str
            only work for glu_in_attention !=0
            default "swish".
        export: bool, optional
            if set to True, it remove the padding from convolutional layers
             and allow the onnx conversion for inference.
              default False.
        activation_checkpointing: str, optional
            a dictionarry of {"module","interval","offload"}, where
                "module": str
                    accept ["transformer", "attention"] to select
                    which module should do activation checkpointing.
                "interval": int, default 1,
                    interval of applying activation checkpointing,
                    interval = 1 means that we apply checkpointing
                    on every layer (if activation), otherwise,
                    we apply it every x interval.
                "offload": bool, default False,
                    if set to True, we offload activation to cpu and
                    reload it during backward, otherwise,
                    we recalculate activation in backward.
            default "".
        extra_layer_output_idx: int
            the layer index to be exposed.
        relative_attention_bias_args: dict, optional
            use more efficient scalar bias-based relative multihead attention (Q*K^T + B)
            implemented in cmb.basics.embedding.[T5/ALiBi]RelativeAttentionLogitBias
            usage: relative_attention_bias_args={"type": t5/alibi}
            additional method-specific arguments can be provided (see transformer_base.py)
        time_reduction: int optional
            time reduction factor
            default 4
        use_pt_scaled_dot_product_attention: whether to use pytorch scaled dot product attention
            in training.
            Default: False
        nemo_conv_settings: dict, optional
            A dictionary of settings for NeMo Subsampling.
            default: None
            usage: nemo_conv_settings=
                {
                    "subsampling":
                        dw_striding/striding/dw_striding_conv1d/striding_conv1d,
                    "conv_channels": int,
                    "subsampling_conv_chunking_factor": int,
                    "is_causal": True/False
                }
        conv2d_extra_padding: str, optional
            Add extra padding in conv2d subsampling layers. Choices are
            (feat, feat_time, none, True)
            Default: none
        replication_pad_for_subsample_embedding:  For batched-streaming decoding, use
            "replication" padding for the cache at start of utterance.
             Default: False
        attention_group_size: int, optional
            the number of groups to use for attention, default 1 (Multi-Head Attention),
            1 = typical Multi-Head Attention,
            1 < attention_group_size < attention_heads = Grouped-Query Attention
            attention_group_size = attenion_heads = Multi-Query Attention
    """

    extra_multi_layer_output_idxs: List[int]

    def __init__(  # pylint: disable-all
        self,
        input_size,
        chunk_size,
        left_chunk,
        num_lang=None,
        attention_dim=256,
        attention_heads=4,
        linear_units=2048,
        num_blocks=6,
        dropout_rate=0.1,
        input_layer="nemo_conv",
        causal=True,
        batch_norm=False,
        cnn_out=-1,
        cnn_layer_norm=False,
        ext_pw_out_channel=0,
        ext_pw_kernel_size=1,
        depthwise_seperable_out_channel=256,
        depthwise_multiplier=1,
        chunk_se=0,
        kernel_size=3,
        activation="relu",
        conv_activation="relu",
        conv_glu_type="sigmoid",
        bias_in_glu=True,
        linear_glu_in_convm=False,
        attention_glu_type="swish",
        export=False,
        extra_layer_output_idx=-1,
        extra_multi_layer_output_idxs=[],
        activation_checkpointing="",
        relative_attention_bias_args=None,
        time_reduction=4,
        use_pt_scaled_dot_product_attention=False,
        nemo_conv_settings=None,
        conv2d_extra_padding: Literal["feat", "feat_time", "none", True] = "none",
        replication_pad_for_subsample_embedding=False,
        attention_group_size=1,
        encoder_embedding_config=None,
    ):
        super().__init__(
            input_size,
            chunk_size,
            left_chunk,
            attention_dim,
            attention_heads,
            input_layer,
            cnn_out,
            cnn_layer_norm,
            time_reduction,
            dropout_rate=dropout_rate,
            relative_attention_bias_args=relative_attention_bias_args,
            positional_dropout_rate=0.0,
            nemo_conv_settings=nemo_conv_settings,
            conv2d_extra_padding=conv2d_extra_padding,
            attention_group_size=attention_group_size,
            encoder_embedding_config=encoder_embedding_config,
        )
        self.num_blocks = num_blocks
        self.num_lang = num_lang
        self.kernel_size = kernel_size
        self.embed = embedding_checkpoint_wrapper(activation_checkpointing)(self.embed)
        self.replication_pad_for_subsample_embedding: bool = replication_pad_for_subsample_embedding
        assert self.num_heads % attention_group_size == 0, "attention_group_size must divide n_head"
        self.num_heads_k = self.num_heads // attention_group_size

        self.encoders = repeat(
            num_blocks,
            lambda i: encoder_checkpoint_wrapper(
                activation_checkpointing, ConformerEncoderLayer, i
            )(
                ConformerEncoderLayer(
                    d_model=attention_dim,
                    ext_pw_out_channel=ext_pw_out_channel,
                    depthwise_seperable_out_channel=depthwise_seperable_out_channel,
                    depthwise_multiplier=depthwise_multiplier,
                    n_head=attention_heads,
                    d_ffn=linear_units,
                    ext_pw_kernel_size=ext_pw_kernel_size,
                    kernel_size=kernel_size,
                    dropout_rate=dropout_rate,
                    causal=causal,
                    batch_norm=batch_norm,
                    activation=activation,
                    chunk_se=chunk_se,
                    chunk_size=chunk_size,
                    conv_activation=conv_activation,
                    conv_glu_type=conv_glu_type,
                    bias_in_glu=bias_in_glu,
                    linear_glu_in_convm=linear_glu_in_convm,
                    attention_glu_type=attention_glu_type,
                    activation_checkpointing=attn_checkpointing(activation_checkpointing, i),
                    export=export,
                    use_pt_scaled_dot_product_attention=use_pt_scaled_dot_product_attention,
                    attn_group_sizes=attention_group_size,
                )
            ),
        )
        self.extra_layer_output_idx = extra_layer_output_idx
        self.extra_multi_layer_output_idxs = extra_multi_layer_output_idxs
        # Make a zeros scalar we can use in get_initial_state to determine
        # the device and the needed dtype:
        self.register_buffer("dev_type", torch.zeros(()), persistent=False)

    def init_relative_attention_bias(self, input_tensor):
        if self.relative_attention_bias_layer:
            return self.relative_attention_bias_layer(input_tensor)

    def calculate_hs_mask(self, xs_pad, device, mask):
        max_audio_length = xs_pad.shape[1]
        batch_size = xs_pad.shape[0]
        enc_streaming_mask = self._streaming_mask(
            max_audio_length, batch_size, self.chunk_size, self.left_chunk
        )
        enc_streaming_mask = enc_streaming_mask.to(device)
        if mask is None:
            return enc_streaming_mask

        feature_lens = mask.sum(1)
        padding_length = feature_lens
        pad_mask = (
            torch.arange(0, max_audio_length, device=device).expand(padding_length.size(0), -1)
            < padding_length.unsqueeze(1)
        )
        pad_mask = pad_mask.unsqueeze(1)
        pad_mask = pad_mask & enc_streaming_mask
        return pad_mask

    @torch.jit.ignore
    def forward(self, xs_pad, masks):
        """Conformer Forward function

        Args:
            xs_pad: torch.Tensor
                input tensor
            masks: torch.Tensor
                post-embedding input lengths
        """
        xs_pad = self.encoder_embedding(xs_pad)
        input_tensor, pos_k, pos_v, hs_mask, masks = self.forward_embeddings(xs_pad, masks)

        unfolded = False
        ori_bz, seq_len, D = input_tensor.shape
        max_seq_len = 500 #maxium position for absolute positional encoding
        if seq_len > max_seq_len:
            # audio sequence is longer than max_seq_len, unfold it into chunks of max_seq_len
            unfolded = True
            # the unfold op will drop residual frames, pad it to the multiple of max_seq_len
            if seq_len % max_seq_len > 0:
                chunk_pad_size = max_seq_len - (seq_len % max_seq_len)
            else:
                chunk_pad_size = 0
            if chunk_pad_size > 0:
                input_tensor_pad = F.pad(input_tensor, (0, 0, 0, chunk_pad_size), "constant", 0)
                input_tensor = input_tensor_pad.to(input_tensor.device)

            input_tensor = unfold_tensor(input_tensor, max_seq_len)
            if masks is not None:
                # revise hs_mask here because the previous calculated hs_mask did not consider extra pad
                subsampled_pad_mask = masks.squeeze(1) # [bz, subsampled_unmask_seq_len]
                extra_padded_subsamlped_pad_mask = F.pad(subsampled_pad_mask, (0, chunk_pad_size), "constant", False) # extra padding to the pad mask
                extra_padded_subsamlped_pad_mask = extra_padded_subsamlped_pad_mask.unsqueeze(-1).float()
                masks_unfold = unfold_tensor(extra_padded_subsamlped_pad_mask, max_seq_len) # unfold the pad mask like we did to the input tensor
                masks_unfold = masks_unfold.squeeze(-1).bool() # unfold op does not support bool tensor
            else:
                masks_unfold = None
            hs_mask = self.calculate_hs_mask(input_tensor, input_tensor.device, masks_unfold) # calculate hs_mask based on the unfolded pad mask
        layer_emb = None

        relative_attention_bias = self.init_relative_attention_bias(input_tensor)

        _simplified_path = (
            self.extra_layer_output_idx == -1
            and relative_attention_bias is None
        )

        if _simplified_path:
            input_tensor, *_ = self.encoders(input_tensor, pos_k, pos_v, hs_mask)
        else:
            for i, layer in enumerate(self.encoders):
                input_tensor, _, _, _ = layer(
                    input_tensor,
                    pos_k,
                    pos_v,
                    hs_mask,
                    relative_attention_bias=relative_attention_bias,
                )

                if i == self.extra_layer_output_idx:
                    layer_emb = input_tensor
        if unfolded:
            embed_dim = input_tensor.shape[-1]
            input_tensor = input_tensor.reshape(ori_bz, -1, embed_dim)
            # if we ever padded before unfolding, we need to remove the padding
            if chunk_pad_size > 0:
                input_tensor = input_tensor[:, :-chunk_pad_size, :]
        return input_tensor, masks #, layer_emb

    def gradient_checkpointing_enable(self):
        pass