Phi-4-multimodal-instruct / speech_conformer_encoder.py
garg-amit's picture
Added model files
d93d2f6
raw
history blame
111 kB
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#!/usr/bin/env python3
# activation_checkpointing.py
"""helper function for activation checkpointing"""
from typing import Union, Dict, Callable
from functools import partial
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
checkpoint_wrapper,
offload_wrapper,
CheckpointImpl,
)
# utils.py
"""cascade basic blocks"""
import math
import backoff
import random
import numpy as np
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch import Tensor
import torch.nn.functional as F
# conformer_encoder.py
"""ConformerEncoder Module"""
from typing import Optional, Tuple, List, Literal
import abc
import math
import numpy as np
import torch
from torch import nn, Tensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import CheckpointWrapper
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel
# activation_checkpointing.py
def validate_checkpointing_config(activation_checkpointing):
"""validate activation checkpointing configuration"""
if isinstance(activation_checkpointing, str):
assert activation_checkpointing in (
"",
"checkpoint",
"offload",
), "activation_checkpointing has to be a dict or a str in ('', 'checkpoint', 'offload')."
elif isinstance(activation_checkpointing, dict):
assert activation_checkpointing.get("module", "transformer") in (
"transformer",
"attention",
), "module in activation_checkpointing has to be in ('transformer', 'attention')."
else:
raise ValueError("activation_checkpointing has to be a str or dict.")
def embedding_checkpoint_wrapper(
activation_checkpointing: Union[str, Dict],
) -> Callable:
"""return encoder embedding activation checkpoint wrapper"""
validate_checkpointing_config(activation_checkpointing)
if isinstance(activation_checkpointing, str):
if activation_checkpointing:
if activation_checkpointing == "offload":
return offload_wrapper
return partial(checkpoint_wrapper)
return lambda x: x
if isinstance(activation_checkpointing, dict):
enabled = activation_checkpointing.get("embed", False)
if enabled:
offloading = activation_checkpointing.get("offload", False)
if offloading:
return offload_wrapper
impl = (
CheckpointImpl.REENTRANT
if activation_checkpointing.get("reentrant", False)
else CheckpointImpl.NO_REENTRANT
)
return partial(checkpoint_wrapper, checkpoint_impl=impl)
return lambda x: x
raise ValueError("Invalid activation_checkpointing config")
def encoder_checkpoint_wrapper(
activation_checkpointing: Union[str, Dict],
layer_cls: type,
idx: int = 0,
) -> Callable:
"""return encoder activation checkpoint wrapper"""
validate_checkpointing_config(activation_checkpointing)
if isinstance(activation_checkpointing, str):
if activation_checkpointing:
if activation_checkpointing == "offload":
return offload_wrapper
return partial(checkpoint_wrapper)
return lambda x: x
if isinstance(activation_checkpointing, dict):
target_layer_cls = activation_checkpointing.get("module", "transformer")
if target_layer_cls.lower() == "transformer":
target_layer_cls = (
"EncoderLayer",
"ConformerEncoderLayer",
)
elif target_layer_cls.lower() == "attention":
target_layer_cls = ("MultiHeadedAttention", "MultiHeadAttention")
checkpointing_interval = activation_checkpointing.get("interval", 1)
offloading = activation_checkpointing.get("offload", False)
impl = (
CheckpointImpl.REENTRANT
if activation_checkpointing.get("reentrant", True)
else CheckpointImpl.NO_REENTRANT
)
if idx % checkpointing_interval == 0 and layer_cls.__name__ in target_layer_cls:
if offloading:
return offload_wrapper
return partial(checkpoint_wrapper, checkpoint_impl=impl)
return lambda x: x
raise ValueError("Invalid activation_checkpointing config")
def attn_checkpointing(activation_checkpointing: Union[str, Dict], i) -> Union[str, Dict]:
"""return activation checkpointing config for attention layer"""
if isinstance(activation_checkpointing, str):
return ""
if isinstance(activation_checkpointing, dict):
target_layer_cls = activation_checkpointing.get("module", "transformer")
checkpointing_interval = activation_checkpointing.get("interval", 1)
if target_layer_cls == "attention" and i % checkpointing_interval == 0:
return activation_checkpointing
return ""
raise ValueError("Invalid activation_checkpointing config")
# utils.py
class Block(nn.Module):
"""Block abstract module"""
def __init__(self, input_size, output_size):
super().__init__()
self.input_size = input_size
self.output_size = output_size
def get_activation(name="relu"):
"""Select an activation function by name
Args:
name: str
activation function name,
one of ["relu", "gelu", "swish", "sigmoid"],
default "relu".
"""
name = name.lower()
if name == "relu":
return nn.ReLU(inplace=True)
if name == "gelu":
return nn.GELU()
if name == "swish":
return Swish()
if name == "sigmoid":
return torch.nn.Sigmoid()
return nn.Identity()
def adaptive_enc_mask(x_len, chunk_start_idx, left_window=0, right_window=0):
"""
The function is very important for Transformer Transducer Streaming mode
Args:
xs_len (int): sequence length
chunk_start_idx (list): first idx of each chunk, such as [0,18,36,48]. It also supports adaptive chunk size [0,10,15,45]
left_window (int): how many left chunks can be seen
right_window (int): how many right chunks can be seen. It is used for chunk overlap model.
Returns:
mask (torch.Tensor): a mask tensor for streaming model
Torch 1.0.1
tensor([[1., 1., 0., 0.],
[0., 1., 1., 0.],
[0., 0., 1., 1.]])
Torch 1.4.1
tensor([[True., True., False., False.],
[False., True., True., False.],
[False., False., True., True.]])
"""
chunk_start_idx = torch.Tensor(
chunk_start_idx
).long() # first idx of each chunk, such as [0,18,36,48].
start_pad = torch.nn.functional.pad(
chunk_start_idx, (1, 0)
) # append 0 to the beginning, so it becomes [0, 0, 18, 36, 48]
end_pad = torch.nn.functional.pad(
chunk_start_idx, (0, 1), value=x_len
) # append x_len to the end, so it becomes [0,18,36,48, x_len]
seq_range = torch.arange(0, x_len).unsqueeze(-1) # seq_range size: [x_len, 1]
idx = ((seq_range < end_pad) & (seq_range >= start_pad)).nonzero()[:, 1] # idx size: [x_len]
boundary = end_pad[idx] # boundary size: [x_len]
seq_range_expand = (
torch.arange(0, x_len).unsqueeze(0).expand(x_len, -1)
) # seq_range_expand size [x_len, x_len]
idx_left = idx - left_window
idx_left[idx_left < 0] = 0
boundary_left = start_pad[idx_left]
mask_left = seq_range_expand >= boundary_left.unsqueeze(-1)
idx_right = idx + right_window
idx_right[idx_right > len(chunk_start_idx)] = len(chunk_start_idx)
boundary_right = end_pad[idx_right]
mask_right = seq_range_expand < boundary_right.unsqueeze(-1)
return mask_left & mask_right
class Swish(nn.Module):
"""Implement Swish activation module.
From https://arxiv.org/pdf/2005.03191.pdf
"""
def __init__(self) -> None:
super().__init__()
self.act_fn = nn.Sigmoid()
def forward(self, x: Tensor) -> Tensor:
"""Apply Swish function
Args:
x: torch.Tensor
Input.
"""
return x * self.act_fn(x)
class GLU(nn.Module):
"""Implement Gated Linear Unit (GLU) module"""
def __init__(self, dim: int = -1, act_name: str = "sigmoid") -> None:
super().__init__()
self.dim = dim
self.act_name = act_name.lower()
if self.act_name == "relu":
self.act_fn = nn.ReLU(inplace=True)
elif self.act_name == "gelu":
self.act_fn = nn.GELU()
elif self.act_name == "swish":
self.act_fn = Swish()
elif self.act_name == "sigmoid":
self.act_fn = nn.Sigmoid()
else:
self.act_fn = nn.Identity()
def forward(self, x: Tensor) -> Tensor:
"""GLU forward
Apply Swish function on the first half of input matrices
with sigmoid of the second half.
Args:
x: torch.Tensor
Input.
"""
half_x, gate = x.chunk(2, dim=self.dim)
return half_x * self.act_fn(gate)
# TODO: Abdel, this can be improved using GLU module
class GLUPointWiseConv(nn.Module):
"""GLUPointWiseConv module
used for conformer architecture,
for more details see:
https://arxiv.org/pdf/2005.08100v1.pdf
Args:
input_dim: int
input channel size.
output_dim: int
output channel size.
kernel_size: int
kernel size
glu_type: str, optional
activation function one of
["sigmoid", "relu", "gelu"]
default "sigmoid".
bias_in_glu: bool, optional
use addtive bias in glu
causal: bool, optional
if set to True, padding is set to the half of
kernel size, ie, convolution can't see future frames.
default False.
"""
def __init__(
self, input_dim, output_dim, kernel_size, glu_type="sigmoid", bias_in_glu=True, causal=False
):
super().__init__()
self.glu_type = glu_type
self.output_dim = output_dim
self.bias_in_glu = bias_in_glu
if causal:
self.ext_pw_conv_1d = nn.Conv1d(
input_dim, output_dim * 2, kernel_size, 1, padding=(kernel_size - 1)
)
else:
self.ext_pw_conv_1d = nn.Conv1d(
input_dim, output_dim * 2, kernel_size, 1, padding=(kernel_size - 1) // 2
)
if glu_type == "sigmoid":
self.glu_act = nn.Sigmoid()
elif glu_type == "relu":
self.glu_act = nn.ReLU()
elif glu_type == "gelu":
self.glu_act = nn.GELU()
elif glu_type == "swish":
self.glu_act = Swish()
else:
raise ValueError(f"Unsupported activation type {self.glu_act}")
if bias_in_glu:
self.b1 = nn.Parameter(torch.zeros(1, output_dim, 1))
self.b2 = nn.Parameter(torch.zeros(1, output_dim, 1))
def forward(self, x):
"""
Args:
x: torch.Tensor
input tensor
"""
# to be consistent with GLULinear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
x = x.permute([0, 2, 1])
x = self.ext_pw_conv_1d(x)
if self.glu_type == "bilinear":
if self.bias_in_glu:
x = (x[:, 0 : self.output_dim, :] + self.b1) * (
x[:, self.output_dim : self.output_dim * 2, :] + self.b2
)
else:
x = (x[:, 0 : self.output_dim, :]) * (
x[:, self.output_dim : self.output_dim * 2, :]
)
else:
if self.bias_in_glu:
x = (x[:, 0 : self.output_dim, :] + self.b1) * self.glu_act(
x[:, self.output_dim : self.output_dim * 2, :] + self.b2
)
else:
x = (x[:, 0 : self.output_dim, :]) * self.glu_act(
x[:, self.output_dim : self.output_dim * 2, :]
)
x = x.permute([0, 2, 1])
return x
class DepthWiseSeperableConv1d(nn.Module):
"""DepthWiseSeperableConv1d module used in Convnet module
for the conformer, for more details see:
https://arxiv.org/pdf/2005.08100v1.pdf
Args:
input_dim: int
input channel size.
depthwise_seperable_out_channel: int
if set different to 0, the number of depthwise_seperable_out_channel
will be used as a channel_out of the second conv1d layer.
otherwise, it equal to 0, the second conv1d layer is skipped.
kernel_size: int
kernel_size
depthwise_multiplier: int
number of input_dim channels duplication. this value
will be used to compute the hidden channels of the Conv1D.
padding: int, optional
padding for the conv1d,
default: 0.
"""
def __init__(
self,
input_dim,
depthwise_seperable_out_channel,
kernel_size,
depthwise_multiplier,
padding=0,
):
super().__init__()
self.dw_conv = nn.Conv1d(
input_dim,
input_dim * depthwise_multiplier,
kernel_size,
1,
padding=padding,
groups=input_dim,
)
if depthwise_seperable_out_channel != 0:
self.pw_conv = nn.Conv1d(
input_dim * depthwise_multiplier, depthwise_seperable_out_channel, 1, 1, 0
)
else:
self.pw_conv = nn.Identity()
self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
def forward(self, x):
"""
Args:
x: torch.Tensor
input tensor
"""
x = self.dw_conv(x)
if self.depthwise_seperable_out_channel != 0:
x = self.pw_conv(x)
return x
class ConvModule(nn.Module):
"""ConvModule Module for the conformer block.
for more details see:
https://arxiv.org/pdf/2005.08100v1.pdf
Args:
input_dim: int
input channel size.
ext_pw_out_channel: int
if > 0, ext_pw_out_channel is a dim channel size
for the last pointwise conv after swish activation.
depthwise_seperable_out_channel: int
if set different to 0, the number of depthwise_seperable_out_channel
will be used as a channel_out of the second conv1d layer.
otherwise, it equal to 0, the second conv1d layer is skipped.
ext_pw_kernel_size: int
kernel size of the conv pointwise of the conformer.
kernel_size: int
kernel size.
depthwise_multiplier: int
number of input_dim channels duplication. this value
will be used to compute the hidden channels of the Conv1D.
dropout_rate: float
dropout rate.
causal: bool, optional
if set to True, convolution have no access
to future frames. default False.
batch_norm: bool, optional
if set to True, apply batchnorm before activation.
default False
chunk_se: int, optional
0 for offline SE.
1 for streaming SE, where mean is computed
by accumulated history until current chunk_se.
2 for streaming SE, where mean is computed
by only the current chunk.
chunk_size: int, optional
chunk size for cnn. default 18
activation: str, optional
activation function used in ConvModule,
default: "relu".
glu_type: str, optional
activation function used for the glu,
default: "sigmoid".
bias_in_glu: bool, optional
if set to True, use additive bias in the weight module
before GLU.
linear_glu_in_convm: bool, optional
if set to True, use GLULinear module,
otherwise, used GLUPointWiseConv module.
default to False.
export: bool, optional,
if set to True, padding is equal to 0. This is for inference,
or onnx export. Typically this is set by the export program or
the decoder program, and it isn't present in your config file.
default False
"""
def __init__(
self,
input_dim,
ext_pw_out_channel,
depthwise_seperable_out_channel,
ext_pw_kernel_size,
kernel_size,
depthwise_multiplier,
dropout_rate,
causal=False,
batch_norm=False,
chunk_se=0,
chunk_size=18,
activation="relu",
glu_type="sigmoid",
bias_in_glu=True,
linear_glu_in_convm=False,
export=False,
):
super().__init__()
self.layer_norm = nn.LayerNorm(input_dim)
self.input_dim = input_dim
self.ext_pw_out_channel = ext_pw_out_channel
self.ext_pw_kernel_size = ext_pw_kernel_size
self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
self.glu_type = glu_type
self.bias_in_glu = bias_in_glu
self.linear_glu_in_convm = linear_glu_in_convm
self.causal = causal
self._add_ext_pw_layer()
self.batch_norm = batch_norm
self.kernel_size = kernel_size
if batch_norm:
self.bn_layer = nn.BatchNorm1d(input_dim)
self.act = get_activation(activation)
self.dropout = nn.Dropout(dropout_rate)
self.export = export
if causal:
if export: # Inference only.
padding = 0 # A cache is concatenated to the left. No padding in the kernel.
else:
# Training only. Padding will be added symmetrically on both sides.
# After convolution, clip off kernel_size-1 points on the right.
padding = kernel_size - 1
else:
padding = (kernel_size - 1) // 2
self.dw_sep_conv_1d = DepthWiseSeperableConv1d(
input_dim,
depthwise_seperable_out_channel,
kernel_size,
depthwise_multiplier,
padding=padding,
)
if depthwise_seperable_out_channel != 0:
if input_dim != depthwise_seperable_out_channel:
self.ln2 = nn.Linear(depthwise_seperable_out_channel, input_dim)
else:
if depthwise_multiplier != 1:
self.ln2 = nn.Linear(input_dim * depthwise_multiplier, input_dim)
def _add_ext_pw_layer(self):
"""
This function is an extension of __init__ function
and dedicated to the convolution module creation
of the conformer.
"""
self.ln1 = self.glu = self.bn_layer = self.ext_pw_conv_1d = nn.Identity() # jit hacks.
self.squeeze_excitation = nn.Identity() # jit.
self.apply_ln1 = self.fix_len1 = False # jit.
if self.ext_pw_out_channel != 0:
if self.causal:
self.ext_pw_conv_1d = nn.Conv1d(
self.input_dim,
self.ext_pw_out_channel,
self.ext_pw_kernel_size,
1,
padding=(self.ext_pw_kernel_size - 1),
)
if self.ext_pw_kernel_size > 1:
self.fix_len1 = True
else:
self.fix_len1 = False
else:
self.ext_pw_conv_1d = nn.Conv1d(
self.input_dim,
self.ext_pw_out_channel,
self.ext_pw_kernel_size,
1,
padding=(self.ext_pw_kernel_size - 1) // 2,
)
self.fix_len1 = False
if self.linear_glu_in_convm:
self.glu = GLULinear(
self.input_dim, self.ext_pw_out_channel, self.glu_type, self.bias_in_glu
)
else:
self.glu = GLUPointWiseConv(
self.input_dim,
self.ext_pw_out_channel,
self.ext_pw_kernel_size,
self.glu_type,
self.bias_in_glu,
self.causal,
)
if self.input_dim != self.ext_pw_out_channel:
self.apply_ln1 = True
self.ln1 = nn.Linear(self.ext_pw_out_channel, self.input_dim)
else:
self.apply_ln1 = False
else:
self.pw_conv_simplify_w = torch.nn.Parameter(torch.ones(3))
self.pw_conv_simplify_b = torch.nn.Parameter(torch.zeros(3))
def forward(self, x):
"""ConvModule Forward.
Args:
x: torch.Tensor
input tensor.
"""
x = self.layer_norm(x)
if self.ext_pw_out_channel != 0:
x = self.glu(x)
if self.causal and self.ext_pw_kernel_size > 1:
x = x[:, : -(self.ext_pw_kernel_size - 1), :]
if self.apply_ln1:
x = self.ln1(x)
else:
x_0 = x * self.pw_conv_simplify_w[0] + self.pw_conv_simplify_b[0]
x_1 = x * self.pw_conv_simplify_w[1] + self.pw_conv_simplify_b[1]
x = x_0 + x_1
x = x.permute([0, 2, 1])
x = self.dw_sep_conv_1d(x)
if self.causal and self.kernel_size > 1:
x = x[:, :, : -(self.kernel_size - 1)]
if hasattr(self, "ln2"):
x = x.permute([0, 2, 1])
x = self.ln2(x)
x = x.permute([0, 2, 1])
if self.batch_norm:
x = self.bn_layer(x)
x = self.act(x)
if self.ext_pw_out_channel != 0:
x = self.ext_pw_conv_1d(x)
if self.fix_len1:
x = x[:, :, : -(self.ext_pw_kernel_size - 1)]
if self.apply_ln1:
x = x.permute([0, 2, 1])
x = self.ln1(x)
x = x.permute([0, 2, 1])
x = x.permute([0, 2, 1])
else:
x = x.unsqueeze(1).permute([0, 1, 3, 2])
x = x * self.pw_conv_simplify_w[2] + self.pw_conv_simplify_b[2]
x = x.squeeze(1)
x = self.dropout(x)
return x
class GLULinear(nn.Module):
"""Linear + GLU module
Args:
input_dim: int
input size
output_dim: int
output size.
glu_type:
activation function name used in glu module.
default "sigmoid" (swish function).
bias_in_glu: bool, optional
If True, the addtive bias is added. Default False.
"""
def __init__(
self,
input_dim,
output_dim,
glu_type="sigmoid",
bias_in_glu=True,
):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim * 2, bias_in_glu)
self.glu_act = GLU(-1, glu_type)
def forward(self, x):
"""GLULinear forward
Args:
x: torch.Tensor
inpute tensor.
"""
x = self.linear(x)
return self.glu_act(x)
class FeedForward(nn.Module):
"""FeedForward Module.
For more details see Conformer paper:
https://arxiv.org/pdf/2005.08100.pdf
Args:
d_model: int
input size.
d_inner: int
output size.
dropout_rate: float,
dropout rate.
activation: str,
activation function name,
one of ["relu", "swish", "sigmoid"],
sigmoid activation is only used with "glu_in_fnn=True",
default "sigmoid".
bias_in_glu: bool, optional
"""
def __init__(
self,
d_model,
d_inner,
dropout_rate,
activation="sigmoid",
bias_in_glu=True,
):
super().__init__()
self.d_model = d_model
self.d_inner = d_inner
self.layer_norm = nn.LayerNorm(d_model)
module = GLULinear(d_model, d_inner, activation, bias_in_glu)
self.net = nn.Sequential(
module,
nn.Dropout(dropout_rate),
nn.Linear(d_inner, d_model),
nn.Dropout(dropout_rate),
)
def forward(self, x):
"""FeedForward forward function.
Args:
x: torch.Tensor
input tensor.
"""
out = self.net(self.layer_norm(x))
return out
#### positional encoding starts here
def _pre_hook(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
"""Perform pre-hook in load_state_dict for backward compatibility.
Note:
We saved self.pe until v.0.5.2 but we have omitted it later.
Therefore, we remove the item "pe" from `state_dict` for backward compatibility.
"""
k = prefix + "pe"
if k in state_dict:
state_dict.pop(k)
class T5RelativeAttentionLogitBias(nn.Module):
"""
This module implements the relative position bias described in Section 2.1 of
the T5 paper: https://arxiv.org/pdf/1910.10683.pdf
The Huggingface implementation is used as a reference
https://github.com/huggingface/transformers/blob/v4.30.0/src/transformers/models/t5/modeling_t5.py#L435
Modifies attention as Q*K^T + B, where B is a learned scalar bias based on relative position
of the query and key. It is HxNxN, where H is the number of heads, N is the sequence length.
I've made these modifications to the original T5 bias:
- Skipping of the bucketing step. Original T5 bias converted rel position distances into
logarithmically increasing buckets. This is supposed to help with length generalization.
- I just directly use rel position index as bias values, as we don't need length
generalization (40s max is good enough for ASR encoder), and it keeps ONNX export simple.
- I've also extended it so that biases can be asymmetric, the default implementation treats
L->R and R->L the same. Asymmetric was found to yield better results in my experiments.
Args:
num_heads: int
Number of attention heads
num_buckets: int
Number of buckets to use for relative attention bias. This is the size of the learnable
bias parameter. Bucketing is not yet supported, so this defaults to -1 which means
no bucketing is used (max_distance determines size of bias param).
max_distance: int
Maximum distance to use for relative attention bias. With num_buckets=-1, this directly
controls the max size of the bias parameter. When num_buckets > 0 is supported, this
will control the maximum distance for logarithmic bucketing after which all positions
are in the same bucket.
symmetric: bool
Whether to use symmetric or asymmetric biases. symmetric=False uses 2x number of bias
params to distinguish L->R from R->L. This was found to be better for the encoder.
"""
def __init__(self, num_heads, num_buckets=-1, max_distance=1000, symmetric=False):
super().__init__()
self.num_heads = num_heads
self.num_buckets = num_buckets
self.max_distance = max_distance
self.symmetric = symmetric
self._skip_bucketing = self.num_buckets < 0
if self._skip_bucketing:
self.num_buckets = max_distance
else:
raise NotImplementedError("T5 attention bias with bucketed positions is not yet tested")
if not self.symmetric:
self.num_buckets *= 2
self.bias_values = nn.Embedding(self.num_buckets, self.num_heads)
def forward(self, x):
# instantiate bias compatible with shape of x
maxpos = x.size(1)
context_position = torch.arange(maxpos, device=x.device, dtype=torch.long)[:, None]
memory_position = torch.arange(maxpos, device=x.device, dtype=torch.long)[None, :]
relative_position = memory_position - context_position
# clipping to a maximum distance using ops that play well with ONNX export
relative_position = relative_position.masked_fill(
relative_position < -self.max_distance, -self.max_distance
)
relative_position = relative_position.masked_fill(
relative_position > self.max_distance - 1, self.max_distance - 1
)
# mapping from relative position to index in the bias parameter
if self._skip_bucketing:
bias_idx = relative_position
else:
bias_idx = self._bucket_relative_position(relative_position)
if self.symmetric:
bias_idx = bias_idx.abs()
else:
bias_idx += self.num_buckets // 2
t5_rel_att_bias = self.bias_values(bias_idx) # [L, L, H]
t5_rel_att_bias = t5_rel_att_bias.permute(2, 0, 1).unsqueeze(0) # [1, H, L, L]
return t5_rel_att_bias
def _bucket_relative_position(self, relative_position):
# this is a placeholder (isn't tested, likely buggy) using HuggingFace implem as a reference
# this also needs to be extended to support asymmetric +/- ve positions
relative_buckets = 0
if not self.causal:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(self.max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
class AbsolutePositionalEncoding(nn.Module):
"""Absolute Positional encoding module.
This module implement Absolute sinusoidal positional encoding
from: https://arxiv.org/pdf/1706.03762.pdf
Args:
d_model: int
Input embedding size.
dropout_rate: float
dropout rate
max_len: int, optional
Maximum input length sequence, Default 5000
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
"""Construct an PositionalEncoding object."""
super().__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
self._register_load_state_dict_pre_hook(_pre_hook)
def extend_pe(self, x):
"""Reset the positional encodings.
Args:
x: torch.Tensor
"""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor):
"""Add positional encoding.
Args:
x: torch.Tensor
Input tensor. shape is (batch, time, ...)
Returns:
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
"""
self.extend_pe(x)
x = x * self.xscale + self.pe[:, : x.size(1)]
return self.dropout(x)
#### forward embedding layers starts here
@backoff.on_exception(backoff.expo, Exception, max_tries=10)
def np_loadtxt_with_retry(filepath):
"""np.loadtxt with retry
Args:
filepath: str
file path to the numpy array.
"""
result = np.loadtxt(filepath, dtype="f")
return result
class MeanVarianceNormLayer(nn.Module):
"""Mean/variance normalization layer.
Will substract mean and multiply input by inverted standard deviation.
Typically used as a very first layer in a model.
Args:
input_size: int
layer input size.
"""
def __init__(self, input_size):
super().__init__()
self.input_size = input_size
self.register_buffer("global_mean", torch.zeros(input_size))
self.register_buffer("global_invstd", torch.ones(input_size))
self.global_mean: Optional[Tensor]
self.global_invstd: Optional[Tensor]
def forward(self, input_: Tensor) -> Tensor:
"""MeanVarianceNormLayer Forward
Args:
input_: torch.Tensor
input tensor.
"""
return (input_ - self.global_mean) * self.global_invstd
def load_mean_invstd(self, mean_file, invstd_file, cuside_features=False):
"""Load feature mean and variance used for normalization.
Args:
mean_file: str
path to the feature mean statistics file.
invstd_file: str
path to the features inverted standard deviation
statistics file.
cuside_features: bool
Boolean that indicates CUSIDE is being used.
The statistics of CUSIDE features are copied
from the normal features
"""
self.global_mean.data = torch.from_numpy(np_loadtxt_with_retry(mean_file))
self.global_invstd.data = torch.from_numpy(np_loadtxt_with_retry(invstd_file))
if cuside_features:
self.global_mean.data = torch.cat((self.global_mean.data, self.global_mean.data), 0)
self.global_invstd.data = torch.cat(
(self.global_invstd.data, self.global_invstd.data), 0
)
class CausalConv1D(nn.Conv1d):
"""
A causal version of nn.Conv1d where each step would have limited access to locations on its right or left
All arguments are the same as nn.Conv1d except padding.
If padding is set None, then paddings are set automatically to make it a causal convolution where each location would not see any steps on its right.
If padding is set as a list (size of 2), then padding[0] would be used as left padding and padding[1] as right padding.
It would make it possible to control the number of steps to be accessible on the right and left.
This mode is not supported when stride > 1. padding[0]+padding[1] should be equal to (kernel_size - 1).
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: Union[str, int] = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = "zeros",
device=None,
dtype=None,
) -> None:
self.cache_drop_size = None
if padding is None:
self._left_padding = kernel_size - 1
self._right_padding = stride - 1
else:
if stride != 1 and padding != kernel_size - 1:
raise ValueError("No striding allowed for non-symmetric convolutions!")
if isinstance(padding, int):
self._left_padding = padding
self._right_padding = padding
elif (
isinstance(padding, list)
and len(padding) == 2
and padding[0] + padding[1] == kernel_size - 1
):
self._left_padding = padding[0]
self._right_padding = padding[1]
else:
raise ValueError(f"Invalid padding param: {padding}!")
self._max_cache_len = self._left_padding
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=0,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode=padding_mode,
device=device,
dtype=dtype,
)
def update_cache(self, x, cache=None):
if cache is None:
new_x = F.pad(x, pad=(self._left_padding, self._right_padding))
next_cache = cache
else:
new_x = F.pad(x, pad=(0, self._right_padding))
new_x = torch.cat([cache, new_x], dim=-1)
if self.cache_drop_size > 0:
next_cache = new_x[:, :, : -self.cache_drop_size]
else:
next_cache = new_x
next_cache = next_cache[:, :, -cache.size(-1) :]
return new_x, next_cache
def forward(self, x, cache=None):
x, cache = self.update_cache(x, cache=cache)
x = super().forward(x)
if cache is None:
return x
else:
return x, cache
class CausalConv2D(nn.Conv2d):
"""
A causal version of nn.Conv2d where each location in the 2D matrix would have no access to locations on its right or down
All arguments are the same as nn.Conv2d except padding which should be set as None
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: Union[str, int] = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
padding_mode: str = "zeros",
device=None,
dtype=None,
) -> None:
if padding is not None:
raise ValueError("Argument padding should be set to None for CausalConv2D.")
self._left_padding = kernel_size - 1
self._right_padding = stride - 1
padding = 0
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
padding_mode,
device,
dtype,
)
def forward(
self,
x,
):
if self.training:
x = F.pad(
x,
pad=(
self._left_padding,
self._right_padding,
self._left_padding,
self._right_padding,
),
)
else:
x = F.pad(
x,
pad=(self._left_padding, self._right_padding, 0, 0),
)
x = super().forward(x)
return x
class NemoConvSubsampling(torch.nn.Module):
"""Convlutional subsampling module, taken from NeMo ASR
(https://github.com/NVIDIA/NeMo/blob/b367413645d5c72db3c2c96e46e95a34501479cf/nemo/collections/asr/parts/submodules/subsampling.py)
Striding Subsampling: "Speech-Transformer: A No-Recurrence Sequence-to-Sequence Model for
Speech Recognition" by Linhao Dong et al. (https://ieeexplore.ieee.org/document/8462506)
Compared with the EncoderConv2D (`input_layer: custom`), this is a much simplified approach,
and uses no LayerNorm and far fewer Conv2Ds. Moreover, depthwise convolutions are used to reduce
FLOPs, but the first layer is kept as a regular convolution so as not to degrade accuracy.
`Striding` and `dw_striding` are the same except that the latter uses depthwise convolutions
after the first layer, whereas the former does not.
Args:
subsampling_factor (int): Time reduction factor
feat_in (int): size of the input features
feat_out (int): size of the output features
subsampling (str): The subsampling technique, choose from
{"striding", "dw-striding", "striding_conv1d", "dw_striding_conv1d"}
conv_channels (int): Number of channels for the convolution layers, default is 256.
subsampling_conv_chunking_factor (int): Input chunking factor which can be -1 (no chunking)
1 (auto) or a power of 2. Default is 1
activation (Module): activation function, default is nn.ReLU()
is_causal (bool): whether to use causal Conv1/2D, where each step will have limited access
to locations on its right or left
"""
def __init__(
self,
feat_in,
feat_out,
subsampling_factor=4,
subsampling="dw_striding",
conv_channels=256,
subsampling_conv_chunking_factor=1,
activation=nn.ReLU(),
is_causal=False,
):
super().__init__()
self._subsampling = subsampling
self._conv_channels = conv_channels
self._feat_in = feat_in
self._feat_out = feat_out
if subsampling_factor % 2 != 0:
raise ValueError("Sampling factor should be a multiply of 2!")
self._sampling_num = int(math.log(subsampling_factor, 2))
self.subsampling_factor = subsampling_factor
self.is_causal = is_causal
self.subsampling_causal_cond = subsampling in ("dw_striding", "striding", "striding_conv1d")
if (
subsampling_conv_chunking_factor != -1
and subsampling_conv_chunking_factor != 1
and subsampling_conv_chunking_factor % 2 != 0
):
raise ValueError("subsampling_conv_chunking_factor should be -1, 1, or a power of 2")
self.subsampling_conv_chunking_factor = subsampling_conv_chunking_factor
in_channels = 1
layers = []
if subsampling == "dw_striding":
self._stride = 2
self._kernel_size = 3
self._ceil_mode = False
if self.is_causal:
self._left_padding = self._kernel_size - 1
self._right_padding = self._stride - 1
self._max_cache_len = subsampling_factor + 1
else:
self._left_padding = (self._kernel_size - 1) // 2
self._right_padding = (self._kernel_size - 1) // 2
self._max_cache_len = 0
# Layer 1
if self.is_causal:
layers.append(
CausalConv2D(
in_channels=in_channels,
out_channels=conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=None,
)
)
else:
layers.append(
torch.nn.Conv2d(
in_channels=in_channels,
out_channels=conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
)
)
in_channels = conv_channels
layers.append(activation)
for i in range(self._sampling_num - 1):
if self.is_causal:
layers.append(
CausalConv2D(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=None,
groups=in_channels,
)
)
else:
layers.append(
torch.nn.Conv2d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
groups=in_channels,
)
)
layers.append(
torch.nn.Conv2d(
in_channels=in_channels,
out_channels=conv_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1,
)
)
layers.append(activation)
in_channels = conv_channels
elif subsampling == "striding":
self._stride = 2
self._kernel_size = 3
self._ceil_mode = False
if self.is_causal:
self._left_padding = self._kernel_size - 1
self._right_padding = self._stride - 1
self._max_cache_len = subsampling_factor + 1
else:
self._left_padding = (self._kernel_size - 1) // 2
self._right_padding = (self._kernel_size - 1) // 2
self._max_cache_len = 0
for i in range(self._sampling_num):
if self.is_causal:
layers.append(
CausalConv2D(
in_channels=in_channels,
out_channels=conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=None,
)
)
else:
layers.append(
torch.nn.Conv2d(
in_channels=in_channels,
out_channels=conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
)
)
layers.append(activation)
in_channels = conv_channels
elif subsampling == "striding_conv1d":
in_channels = feat_in
self._stride = 2
self._kernel_size = 5
self._ceil_mode = False
if self.is_causal:
self._left_padding = self._kernel_size - 1
self._right_padding = self._stride - 1
self._max_cache_len = subsampling_factor + 1
else:
self._left_padding = (self._kernel_size - 1) // 2
self._right_padding = (self._kernel_size - 1) // 2
self._max_cache_len = 0
for i in range(self._sampling_num):
if self.is_causal:
layers.append(
CausalConv1D(
in_channels=in_channels,
out_channels=feat_out if self._sampling_num == i + 1 else conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=None,
)
)
else:
layers.append(
torch.nn.Conv1d(
in_channels=in_channels,
out_channels=feat_out if self._sampling_num == i + 1 else conv_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
)
)
layers.append(activation)
in_channels = conv_channels
elif subsampling == "dw_striding_conv1d":
in_channels = feat_in
self._stride = 2
self._kernel_size = 5
self._ceil_mode = False
self._left_padding = (self._kernel_size - 1) // 2
self._right_padding = (self._kernel_size - 1) // 2
# Layer 1
layers.extend(
[
torch.nn.Conv1d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
groups=in_channels,
),
torch.nn.Conv1d(
in_channels=in_channels,
out_channels=feat_out if self._sampling_num == 1 else conv_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1,
),
]
)
in_channels = conv_channels
layers.append(activation)
for i in range(self._sampling_num - 1):
layers.extend(
[
torch.nn.Conv1d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=self._kernel_size,
stride=self._stride,
padding=self._left_padding,
groups=in_channels,
),
torch.nn.Conv1d(
in_channels=in_channels,
out_channels=feat_out if self._sampling_num == i + 2 else conv_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1,
),
]
)
layers.append(activation)
in_channels = conv_channels
else:
raise ValueError(f"Not valid sub-sampling: {subsampling}!")
if subsampling in ["dw_striding", "striding"]:
in_length = torch.tensor(feat_in, dtype=torch.float)
out_length = calc_length(
lengths=in_length,
all_paddings=self._left_padding + self._right_padding,
kernel_size=self._kernel_size,
stride=self._stride,
ceil_mode=self._ceil_mode,
repeat_num=self._sampling_num,
)
self.out = torch.nn.Linear(conv_channels * int(out_length), feat_out)
self.conv2d_subsampling = True
elif subsampling in ["striding_conv1d", "dw_striding_conv1d"]:
self.out = None
self.conv2d_subsampling = False
else:
raise ValueError(f"Not valid sub-sampling: {subsampling}!")
self.conv = torch.nn.Sequential(*layers)
def get_sampling_frames(self):
return [1, self.subsampling_factor]
def get_streaming_cache_size(self):
return [0, self.subsampling_factor + 1]
def forward(self, x, mask):
"""
Forward method for NeMo subsampling.
Args:
x[Batch, Time, Filters]: torch.Tensor
input tensor
x_mask: torch.Tensor
input mask
Returns:
x: torch.Tensor
Resulting tensor from subsampling (B, T // time_reduction_factor, feat_out)
pad_mask: torch.Tensor
tensor of padded hidden state sequences (B, 1, T // time_reduction_factor)
"""
# Unsqueeze Channel Axis
if self.conv2d_subsampling:
x = x.unsqueeze(1)
# Transpose to Channel First mode
else:
x = x.transpose(1, 2)
# split inputs if chunking_factor is set
if self.subsampling_conv_chunking_factor != -1 and self.conv2d_subsampling:
if self.subsampling_conv_chunking_factor == 1:
# if subsampling_conv_chunking_factor is 1, we split only if needed
# avoiding a bug / feature limiting indexing of tensors to 2**31
# see https://github.com/pytorch/pytorch/issues/80020
x_ceil = 2**31 / self._conv_channels * self._stride * self._stride
if torch.numel(x) > x_ceil:
need_to_split = True
else:
need_to_split = False
else:
# if subsampling_conv_chunking_factor > 1 we always split
need_to_split = True
if need_to_split:
x, success = self.conv_split_by_batch(x)
if not success: # if unable to split by batch, try by channel
if self._subsampling == "dw_striding":
x = self.conv_split_by_channel(x)
else:
x = self.conv(x) # try anyway
else:
x = self.conv(x)
else:
x = self.conv(x)
# Flatten Channel and Frequency Axes
if self.conv2d_subsampling:
b, c, t, f = x.size()
x = self.out(x.transpose(1, 2).reshape(b, t, -1))
# Transpose to Channel Last mode
else:
x = x.transpose(1, 2)
if mask is None:
return x, None
max_audio_length = x.shape[1]
feature_lens = mask.sum(1)
padding_length = torch.ceil(feature_lens / self.subsampling_factor)
if self.is_causal and self.subsampling_causal_cond:
feature_lens_remainder = feature_lens % self.subsampling_factor
padding_length[feature_lens_remainder != 1] += 1
pad_mask = (
torch.arange(0, max_audio_length, device=x.device).expand(padding_length.size(0), -1)
< padding_length.unsqueeze(1)
)
return x, pad_mask.unsqueeze(1)
def reset_parameters(self):
# initialize weights
if self._subsampling == "dw_striding":
with torch.no_grad():
# init conv
scale = 1.0 / self._kernel_size
dw_max = (self._kernel_size**2) ** -0.5
pw_max = self._conv_channels**-0.5
torch.nn.init.uniform_(self.conv[0].weight, -scale, scale)
torch.nn.init.uniform_(self.conv[0].bias, -scale, scale)
for idx in range(2, len(self.conv), 3):
torch.nn.init.uniform_(self.conv[idx].weight, -dw_max, dw_max)
torch.nn.init.uniform_(self.conv[idx].bias, -dw_max, dw_max)
torch.nn.init.uniform_(self.conv[idx + 1].weight, -pw_max, pw_max)
torch.nn.init.uniform_(self.conv[idx + 1].bias, -pw_max, pw_max)
# init fc (80 * 64 = 5120 from https://github.com/kssteven418/Squeezeformer/blob/13c97d6cf92f2844d2cb3142b4c5bfa9ad1a8951/src/models/conformer_encoder.py#L487
fc_scale = (self._feat_out * self._feat_in / self._sampling_num) ** -0.5
torch.nn.init.uniform_(self.out.weight, -fc_scale, fc_scale)
torch.nn.init.uniform_(self.out.bias, -fc_scale, fc_scale)
def conv_split_by_batch(self, x):
"""Tries to split input by batch, run conv and concat results"""
b, _, _, _ = x.size()
if b == 1: # can't split if batch size is 1
return x, False
if self.subsampling_conv_chunking_factor > 1:
cf = self.subsampling_conv_chunking_factor
else:
# avoiding a bug / feature limiting indexing of tensors to 2**31
# see https://github.com/pytorch/pytorch/issues/80020
x_ceil = 2**31 / self._conv_channels * self._stride * self._stride
p = math.ceil(math.log(torch.numel(x) / x_ceil, 2))
cf = 2**p
new_batch_size = b // cf
if new_batch_size == 0: # input is too big
return x, False
return torch.cat([self.conv(chunk) for chunk in torch.split(x, new_batch_size, 0)]), True
def conv_split_by_channel(self, x):
"""For dw convs, tries to split input by time, run conv and concat results"""
x = self.conv[0](x) # full conv2D
x = self.conv[1](x) # activation
for i in range(self._sampling_num - 1):
_, c, t, _ = x.size()
if self.subsampling_conv_chunking_factor > 1:
cf = self.subsampling_conv_chunking_factor
else:
# avoiding a bug / feature limiting indexing of tensors to 2**31
# see https://github.com/pytorch/pytorch/issues/80020
p = math.ceil(math.log(torch.numel(x) / 2**31, 2))
cf = 2**p
new_c = int(c // cf)
if new_c == 0:
new_c = 1
new_t = int(t // cf)
if new_t == 0:
new_t = 1
x = self.channel_chunked_conv(self.conv[i * 3 + 2], new_c, x) # conv2D, depthwise
# splitting pointwise convs by time
x = torch.cat(
[self.conv[i * 3 + 3](chunk) for chunk in torch.split(x, new_t, 2)], 2
) # conv2D, pointwise
x = self.conv[i * 3 + 4](x) # activation
return x
def channel_chunked_conv(self, conv, chunk_size, x):
"""Performs channel chunked convolution"""
ind = 0
out_chunks = []
for chunk in torch.split(x, chunk_size, 1):
step = chunk.size()[1]
if self.is_causal:
chunk = nn.functional.pad(
chunk,
pad=(
self._kernel_size - 1,
self._stride - 1,
self._kernel_size - 1,
self._stride - 1,
),
)
ch_out = nn.functional.conv2d(
chunk,
conv.weight[ind : ind + step, :, :, :],
bias=conv.bias[ind : ind + step],
stride=self._stride,
padding=0,
groups=step,
)
else:
ch_out = nn.functional.conv2d(
chunk,
conv.weight[ind : ind + step, :, :, :],
bias=conv.bias[ind : ind + step],
stride=self._stride,
padding=self._left_padding,
groups=step,
)
out_chunks.append(ch_out)
ind += step
return torch.cat(out_chunks, 1)
def change_subsampling_conv_chunking_factor(self, subsampling_conv_chunking_factor: int):
if (
subsampling_conv_chunking_factor != -1
and subsampling_conv_chunking_factor != 1
and subsampling_conv_chunking_factor % 2 != 0
):
raise ValueError("subsampling_conv_chunking_factor should be -1, 1, or a power of 2")
self.subsampling_conv_chunking_factor = subsampling_conv_chunking_factor
def calc_length(lengths, all_paddings, kernel_size, stride, ceil_mode, repeat_num=1):
"""Calculates the output length of a Tensor passed through a convolution or max pooling layer"""
add_pad: float = all_paddings - kernel_size
one: float = 1.0
for i in range(repeat_num):
lengths = torch.div(lengths.to(dtype=torch.float) + add_pad, stride) + one
if ceil_mode:
lengths = torch.ceil(lengths)
else:
lengths = torch.floor(lengths)
return lengths.to(dtype=torch.int)
#### multihead attention starts here
class AttModule(nn.Module):
"""Attention abstraction module"""
def __init__(self):
super().__init__()
self.export_mode = False
def set_export(self, mode=True):
"""set the export mode"""
self.export_mode = mode
def forward(
self,
x: Tensor,
memory: Optional[Tensor] = None,
pos_emb: Optional[Tensor] = None,
att_mask: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor, Optional[Tensor], Optional[Tensor]]:
"""AttModule forward
Args:
x: torch.Tensor
input tensor.
memory: torch.Tensor, optional
memory tensor.
pos_emb: torch.Tensor, optional
positional encoder embedding.
att_mask: torch.Tensor, optional
attention mask tensor.
"""
return x, memory, pos_emb, att_mask
class AttBlock(Block, AttModule):
"""Attention Block module to support both Attention and Block module."""
def memory_dims(self, max_len=False):
"""memory dimensions"""
return (1, self.input_size)
def masked_softmax(
scores,
mask: Optional[Tensor],
):
if mask is not None:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, time1, time2)
scores = scores.masked_fill(mask, -torch.inf)
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0) # (batch, head, time1, time2)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
return attn
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer with optional relative position embedding and GLU.
Args:
n_head: int
the number of heads.
n_feat: int
input size features.
dropout_rate: float
dropout rate.
use_LN: bool
apply layer norm or not
dropout_at_output: bool
whether to apply dropout at output
attention_inner_dim: int, optional
the attention dimension used in the class,
it can be different from the input dimension n_feat.
default: -1 (equal to n_feat).
use_pt_scaled_dot_product_attention: bool, optional
if set True, use pytorch scaled dot product attention in training. NOTE: this will NOT
be used in ONNX decoding due to a lack of support. In that case, we use the original
attention implementation, which shows no regression.
default: False.
n_value: int, optional
if set to values other than -1, use a different dimension for value. With the default value (i.e. -1), it is backward compatible.
group_size: int, optional. must divide `n_head`
if group_size > 1: GQA
if group_size = 1: MHA
if group_size = n_head: MQA
"""
inv_sqrt_d_k: torch.jit.Final[float]
h: torch.jit.Final[int]
h_k: torch.jit.Final[int]
g: torch.jit.Final[int]
def __init__(
self,
n_head,
n_feat,
dropout_rate,
attention_inner_dim=-1,
glu_type="swish",
bias_in_glu=True,
use_pt_scaled_dot_product_attention=False,
n_value=-1,
group_size: int = 1,
):
super().__init__()
if n_value == -1:
n_value = n_feat
if attention_inner_dim == -1:
attention_inner_dim = n_feat
assert attention_inner_dim % n_head == 0
# We assume d_v always equals d_k
self.d_k = attention_inner_dim // n_head
self.inv_sqrt_d_k = 1.0 / math.sqrt(self.d_k)
self.h = n_head
assert n_head % group_size == 0, "group_size must divide n_head"
self.g = group_size
self.h_k = n_head // group_size
self.linear_q = nn.Linear(n_feat, attention_inner_dim)
self.linear_k = nn.Linear(n_feat, attention_inner_dim // group_size)
self.linear_v = nn.Linear(n_value, attention_inner_dim // group_size)
self.linear_out = nn.Linear(attention_inner_dim // group_size, n_value)
self.attn = torch.jit.Attribute(None, Optional[Tensor])
self.dropout = nn.Dropout(p=dropout_rate)
self.dropout_rate = dropout_rate
self.use_pt_scaled_dot_product_attention = use_pt_scaled_dot_product_attention
if use_pt_scaled_dot_product_attention and group_size > 1:
raise ValueError("Cannot use PT Scaled Attention with GQA")
# Torchscript eager quantization. Note that these functions below are
# NOOPs and have very little impact on performance unless quantization is
# enabled.
self.quant_q = torch.ao.quantization.QuantStub()
self.quant_x = torch.ao.quantization.QuantStub()
self.dequant = torch.ao.quantization.DeQuantStub()
self.ffunc = torch.ao.nn.quantized.FloatFunctional()
def forward(
self,
query: Tensor,
key: Tensor,
value: Tensor,
pos_k: Tensor,
pos_v: Tensor,
mask: Optional[Tensor],
relative_attention_bias: Optional[Tensor] = None,
):
"""Compute 'Scaled Dot Product Attention'.
Args:
query: torch.Tensor
query tensor (batch, time1, size)
key: torch.Tensor
key tensor (batch, time2, size)
value: torch.Tensor
value tensor (batch, time1, size)
pos_k: torch.Tensor
key tensor used for relative positional embedding.
pos_v: torch.Tensor
value tensor used for relative positional embedding.
mask: torch.Tensor
mask tensor (batch, time1, time2)
relative_attention_bias: torch.Tensor
bias added to attention logits w.r.t. relative positions (1, n_head, time1, time2)
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) # (b, t, d)
k = self.linear_k(key).view(n_batch, -1, self.h_k, self.d_k) # (b, t, d)
v = self.linear_v(value).view(n_batch, -1, self.h_k, self.d_k)
q = (
q.transpose(1, 2)
if self.use_pt_scaled_dot_product_attention and not torch.jit.is_scripting()
else q.transpose(1, 2) * self.inv_sqrt_d_k
)
k = k.transpose(1, 2) # (batch, head_k, time2, d_k)
v = v.transpose(1, 2) # (batch, head_k, time2, d_k)
if self.use_pt_scaled_dot_product_attention and not torch.jit.is_scripting():
attn_mask = None
if mask is not None:
mask = mask.unsqueeze(1)
if relative_attention_bias is not None:
attn_mask = mask + relative_attention_bias
else:
attn_mask = mask
if mask.dtype != q.dtype:
attn_mask = attn_mask.to(q.dtype)
with torch.backends.cuda.sdp_kernel(
enable_flash=True, enable_math=True, enable_mem_efficient=True
):
x = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attn_mask,
dropout_p=self.dropout_rate,
)
else:
if self.h != self.h_k:
q = q.reshape(n_batch, self.g, self.h_k, -1, self.d_k)
A = torch.einsum("b g h t d, b h s d -> b h t s", q, k)
else:
A = torch.matmul(q, k.transpose(-2, -1))
if pos_k is not None:
if self.h != self.h_k:
B = torch.einsum("b g h t d, t s d -> b h t s", q, pos_k)
else:
reshape_q = (
q.contiguous().view(n_batch * self.h, -1, self.d_k).transpose(0, 1)
) # (t1,nh,dk)
B = torch.matmul(reshape_q, pos_k.transpose(-2, -1)) # pos_k: (t1,dk,t2)
B = B.transpose(0, 1).view(n_batch, self.h, pos_k.size(0), pos_k.size(1))
scores = A + B
else:
scores = A
if relative_attention_bias is not None:
scores = scores + relative_attention_bias
attn = masked_softmax(scores, mask) # (batch, head, time1, time2)
self.attn = attn
p_attn = self.dropout(attn)
x = torch.matmul(p_attn.to(v.dtype), v) # (batch, head, time1, d_k)
if pos_v is not None:
reshape_attn = (
p_attn.contiguous()
.view(n_batch * self.h, pos_v.size(0), pos_v.size(1))
.transpose(0, 1)
) # (t1, bh, t2)
attn_v = (
torch.matmul(reshape_attn, pos_v)
.transpose(0, 1)
.contiguous()
.view(n_batch, self.h, pos_v.size(0), self.d_k)
)
x = x + attn_v
x = (
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h_k * self.d_k)
) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def unfold_tensor(xs_pad, max_seq_len):
"""
For a given tensor with shape of (N, T, D), if sequence length T is longer than max_seq_len,
this function unfold it to a (NT', max_seq_len, D) where T' is T // max_seq_len.
Args:
xs_pad: N, T, D
"""
_, _, D = xs_pad.shape
xs_pad = xs_pad.transpose(-1, -2) # convert to N, D, T
# N x D x 1 x T => N x (D x max_seq_len) x T'
xs_pad = F.unfold(
xs_pad[..., None, :],
kernel_size=(1, max_seq_len),
stride=(1, max_seq_len),
)
new_bsz, _, slen = xs_pad.shape
# N x D x max_seq_len x T'
xs_pad = xs_pad.view(new_bsz, -1, max_seq_len, slen)
# N x T' x max_seq_len x D
xs_pad = xs_pad.permute(0, 3, 2, 1).contiguous()
# NT' x max_seq_len x D
xs_pad = xs_pad.view(-1, max_seq_len, D)
return xs_pad
# conformer_encoder.py
class MultiSequential(torch.nn.Sequential):
"""Multi-input multi-output torch.nn.Sequential"""
@torch.jit.ignore
def forward(self, *args):
"""Forward method implementation."""
for m in self:
args = m(*args)
return args
def repeat(repeat_num, module_gen_fn):
"""repeat module N times
:param int repeat_num: repeat time
:param function module_gen_fn: function to generate module
:return: repeated modules
:rtype: MultiSequential
"""
return MultiSequential(*[module_gen_fn(i) for i in range(repeat_num)])
class ConformerEncoderLayer(nn.Module):
"""ConformerEncoder Layer module.
for more details see conformer paper:
https://arxiv.org/abs/2005.08100
This module implement the Conformer block layer.
Args:
d_model: int
attention dim.
ext_pw_out_channel: int
if > 0, ext_pw_out_channel is a dim channel size
for the last pointwise conv after swish activation.
depthwise_seperable_out_channel: int
if set different to 0, the number of depthwise_seperable_out_channel
will be used as a channel_out of the second conv1d layer.
otherwise, it equal to 0, the second conv1d layer is skipped.
depthwise_multiplier: int
number of input_dim channels duplication. this value
will be used to compute the hidden channels of the Conv1D.
n_head: int
the number of heads for multihead attention module.
d_ffn: int
output size of the feed_forward blocks.
ext_pw_kernel_size: int
kernel size of the conv pointwise of the conformer.
kernel_size: int
kernel size.
dropout_rate: float
dropout rate.
causal: bool, optional
if set to True, convolution have no access
to future frames. default False.
batch_norm: bool, optional
if set to True, apply batchnorm before activation
in ConvModule layer of the conformer.
default False
activation: str, optional
activation function name,
one of ["relu", "swish", "sigmoid"],
sigmoid activation is only used with "glu_in_fnn=True",
default "relu".
chunk_se: int, optional
0 for offline SE.
1 for streaming SE, where mean is computed
by accumulated history until current chunk_se.
2 for streaming SE, where mean is computed
by only the current chunk.
default 0.
chunk_size: int, optional
chunk_size for cnn. default 18
conv_activation: str, optional
activation function used in ConvModule part
of the conformer, default "relu".
conv_glu_type: str, optional
activation function used for the glu inside
the ConvModule part of the conformer.
default: "sigmoid".
bias_in_glu: bool, optional
if set to True, use additive bias in the weight module
before GLU.
linear_glu_in_convm: bool, optional
if set to True, use GLULinear module,
otherwise, used GLUPointWiseConv module.
default to False.
attention_innner_dim: int, otional
if equal to -1, attention dim for linears k/q/v is
equal to d_model. otherwise attention_innner_dim is used.
default -1.
attention_glu_type: str, optional
activation function for glu used in the multihead attention,
default "swish".
activation_checkpointing: str, optional
a dictionarry of {"module","interval","offload"}, where
"module": str
accept ["transformer", "attention"] to select
which module should do activation checkpointing.
"interval": int, default 1,
interval of applying activation checkpointing,
interval = 1 means that we apply checkpointing
on every layer (if activation), otherwise,
we apply it every x interval.
"offload": bool, default False,
if set to True, we offload activation to cpu and
reload it during backward, otherwise,
we recalculate activation in backward.
default "".
export: bool, optional
if set to True, it remove the padding from convolutional layers
and allow the onnx conversion for inference.
default False.
use_pt_scaled_dot_product_attention: bool, optional
if set to True, use pytorch's scaled dot product attention implementation in training.
attn_group_sizes: int, optional
the number of groups to use for attention, default 1 (Multi-Head Attention),
1 = typical Multi-Head Attention,
1 < attn_group_sizes < attention_heads = Grouped-Query Attention
attn_group_sizes = attenion_heads = Multi-Query Attention
"""
def __init__(
self,
d_model=512,
ext_pw_out_channel=0,
depthwise_seperable_out_channel=256,
depthwise_multiplier=1,
n_head=4,
d_ffn=2048,
ext_pw_kernel_size=1,
kernel_size=3,
dropout_rate=0.1,
causal=False,
batch_norm=False,
activation="relu",
chunk_se=0,
chunk_size=18,
conv_activation="relu",
conv_glu_type="sigmoid",
bias_in_glu=True,
linear_glu_in_convm=False,
attention_innner_dim=-1,
attention_glu_type="swish",
activation_checkpointing="",
export=False,
use_pt_scaled_dot_product_attention=False,
attn_group_sizes: int = 1,
):
super().__init__()
self.feed_forward_in = FeedForward(
d_model=d_model,
d_inner=d_ffn,
dropout_rate=dropout_rate,
activation=activation,
bias_in_glu=bias_in_glu,
)
self.self_attn = encoder_checkpoint_wrapper(
activation_checkpointing,
MultiHeadedAttention,
)(
MultiHeadedAttention(
n_head,
d_model,
dropout_rate,
attention_innner_dim,
attention_glu_type,
bias_in_glu,
use_pt_scaled_dot_product_attention=use_pt_scaled_dot_product_attention,
group_size=attn_group_sizes,
)
)
self.conv = ConvModule(
d_model,
ext_pw_out_channel,
depthwise_seperable_out_channel,
ext_pw_kernel_size,
kernel_size,
depthwise_multiplier,
dropout_rate,
causal,
batch_norm,
chunk_se,
chunk_size,
conv_activation,
conv_glu_type,
bias_in_glu,
linear_glu_in_convm,
export=export,
)
self.feed_forward_out = FeedForward(
d_model=d_model,
d_inner=d_ffn,
dropout_rate=dropout_rate,
activation=activation,
bias_in_glu=bias_in_glu,
)
self.layer_norm_att = nn.LayerNorm(d_model)
self.layer_norm = nn.LayerNorm(d_model)
def forward(
self,
x,
pos_k,
pos_v,
mask,
relative_attention_bias: Optional[Tensor] = None,
):
"""ConformerEncoder forward.
Args:
x: torch.Tensor
input feature of shape (batch, max_time_in, size)
pos_k: torch.Tensor
positional key embedding.
mask: torch.Tensor
mask for x (batch, max_time_in)
relative_attention_bias: Optional[torch.Tensor]
bias added to attention logits w.r.t. relative positions (1, n_head, time1, time2)
"""
x = x + 0.5 * self.feed_forward_in(x)
norm_x = self.layer_norm_att(x)
x = x + self.self_attn(
norm_x,
norm_x,
norm_x,
pos_k,
pos_v,
mask,
relative_attention_bias=relative_attention_bias,
)
x = x + self.conv(x)
x = x + 0.5 * self.feed_forward_out(x)
out = self.layer_norm(x)
return out, pos_k, pos_v, mask
class TransformerEncoderBase(abc.ABC, nn.Module):
"""The Base class for Transformer based encoders
Please set causal = True in streaming model
Args:
input_size: int
input feature dimension.
chunk_size: int, list(int)
Number of frames for each chunk
This variable can take 2 forms:
int: Used for inference, or single chunk size training
list(int) : Used only for variable chunk size training
Some examples for the 2 cases:
chunk_size = 12
chunk_size = [6, 8, 12, 24]
left_chunk: int, list(int)
Number of chunks used for masking in streaming mode.
This variable can take 2 forms:
int: Used for inference, or single chunk size training
list(int) : Used only for variable chunk size training. When
chunk_size is a list, left_chunk must be a list with same length.
Some examples for the 2 cases:
left_chunk = 6
left_chunk = [12, 9, 6, 3]
attention_dim: int, optional
attention dimension. default 256.
attention_heads: int, optional
the number of heads. default 4
input_layer: str, optional
input layer type before Conformer,
one of ["linear", "conv2d", "custom", "vgg2l", "embed"],
default "conv2d"
cnn_out: int, optional
the number of CNN channels before Conformer.
default -1.
cnn_layer_norm: bool, optional
layer norm between Conformer and the first CNN.
default False.
time_reduction: int, optional
time reduction factor
default 4
dropout_rate: float, optional
dropout rate. default 0.1
padding_idx: int, optional
padding index for input_layer=embed
default -1
relative_attention_bias_args: dict, optional
use more efficient scalar bias-based relative multihead attention (Q*K^T + B)
implemented in cmb.basics.embedding.[T5/ALiBi]RelativeAttentionLogitBias
usage: relative_attention_bias_args={"type": t5/alibi}
additional method-specific arguments can be provided (see transformer_base.py)
positional_dropout_rate: float, optional
dropout rate after positional encoding. default 0.0
nemo_conv_settings: dict, optional
A dictionary of settings for NeMo Subsampling.
default None
conv2d_extra_padding: str, optional
Add extra padding in conv2d subsampling layers. Choices are
(feat, feat_time, none, True).
if True or feat_time, the extra padding is added into non full
supraframe utts in batch.
Default: none
attention_group_size: int, optional
the number of groups to use for attention, default 1 (Multi-Head Attention),
1 = typical Multi-Head Attention,
1 < attention_group_size < attention_heads = Grouped-Query Attention
attention_group_size = attenion_heads = Multi-Query Attention
"""
def __init__(
self,
input_size,
chunk_size,
left_chunk,
attention_dim=256,
attention_heads=4,
input_layer="nemo_conv",
cnn_out=-1,
cnn_layer_norm=False,
time_reduction=4,
dropout_rate=0.0,
padding_idx=-1,
relative_attention_bias_args=None,
positional_dropout_rate=0.0,
nemo_conv_settings=None,
conv2d_extra_padding: Literal["feat", "feat_time", "none", True] = "none",
attention_group_size=1,
encoder_embedding_config=None,
):
super().__init__()
self.input_size = input_size
self.input_layer = input_layer
self.chunk_size = chunk_size
self.left_chunk = left_chunk
self.attention_dim = attention_dim
self.num_heads = attention_heads
self.attention_group_size = attention_group_size
self.time_reduction = time_reduction
self.nemo_conv_settings = nemo_conv_settings
self.encoder_embedding_config = encoder_embedding_config
if self.input_layer == "nemo_conv":
default_nemo_conv_settings = {
"subsampling": "dw_striding",
"subsampling_factor": self.time_reduction,
"feat_in": input_size,
"feat_out": attention_dim,
"conv_channels": 256,
"subsampling_conv_chunking_factor": 1,
"activation": nn.ReLU(),
"is_causal": False,
}
# Override any of the defaults with the incoming, user settings
if nemo_conv_settings:
default_nemo_conv_settings.update(nemo_conv_settings)
for i in ["subsampling_factor", "feat_in", "feat_out"]:
assert (
i not in nemo_conv_settings
), "{i} should be specified outside of the NeMo dictionary"
self.embed = NemoConvSubsampling(
**default_nemo_conv_settings,
)
else:
raise ValueError("unknown input_layer: " + input_layer)
self.pos_emb = AbsolutePositionalEncoding(attention_dim, positional_dropout_rate)
self.relative_attention_bias_type = (
relative_attention_bias_args.get("type") if relative_attention_bias_args else None
)
if self.relative_attention_bias_type == "t5":
assert (
self.num_heads % self.attention_group_size == 0
), "attention_group_size must divide n_head"
self.relative_attention_bias_layer = T5RelativeAttentionLogitBias(
self.num_heads // self.attention_group_size,
max_distance=relative_attention_bias_args.get("t5_bias_max_distance", 1000),
symmetric=relative_attention_bias_args.get("t5_bias_symmetric", False),
)
else:
raise NotImplementedError
def post_init(self, init_model_config):
pretrained_speech_encoder_path = init_model_config.get('pretrained_speech_encoder_path', None)
if pretrained_speech_encoder_path:
model_state = torch.load(pretrained_speech_encoder_path, map_location="cpu")
encoder_state_dict = {}
for k, v in model_state.items():
if "encoder." in k:
tmp_k = k.replace("encoder.", "")
encoder_state_dict[tmp_k] = v
if hasattr(self, "encoder_embedding"):
del self.encoder_embedding
self.load_state_dict(encoder_state_dict)
if not hasattr(self, "encoder_embedding"):
self.encoder_embedding = MeanVarianceNormLayer(self.encoder_embedding_config["input_size"])
mean_file = init_model_config.get('mean_file', None)
invstd_file = init_model_config.get('invstd_file', None)
if mean_file is not None and invstd_file is not None:
self.encoder_embedding.load_mean_invstd(mean_file, invstd_file)
def compute_lens_change(self, feature_lens):
"""feature_lens: int
return updated feature lens.
This used to return a different lambda function for each case that computed
the right thing. That does not work within Torchscript. If you really
need this to be faster, create nn.Module()-s for all the cases and return
one of them. Torchscript does support that.
"""
if self.input_layer == "nemo_conv":
# Handle the special causal case
subsampling_causal_cond = self.nemo_conv_settings.get("subsampling", "dw_striding") in [
"dw_striding",
"striding",
"striding_conv1d",
]
is_causal = self.nemo_conv_settings.get("is_causal", False)
if is_causal and subsampling_causal_cond:
lens_change = (
torch.ceil(feature_lens / self.time_reduction).long()
if isinstance(feature_lens, Tensor)
else math.ceil(feature_lens / self.time_reduction)
)
feature_lens_remainder = feature_lens % self.time_reduction
if isinstance(feature_lens, Tensor):
lens_change[feature_lens_remainder != 1] += 1
elif feature_lens_remainder != 1:
lens_change += 1
return lens_change
ceil_func = math.ceil if isinstance(feature_lens, int) else torch.ceil
return ceil_func(feature_lens / self.time_reduction)
@abc.abstractmethod
def forward(self):
"""Abstract forward method implementation."""
def _chunk_size_selection(self, chunk_size=None, left_chunk=None):
"""If chunk size is a list, we will randomly select a chunk size."""
if chunk_size is None:
chunk_size = self.chunk_size
if left_chunk is None:
left_chunk = self.left_chunk
if isinstance(chunk_size, list):
# Variable chunk size during training
chunk_size_index = int(torch.randint(low=0, high=len(chunk_size), size=(1,)))
chunk_size_train_eff = chunk_size[chunk_size_index]
if not isinstance(left_chunk, list):
raise ValueError("Since chunk_size is a list, left_chunk must be a list")
if len(left_chunk) != len(chunk_size):
raise ValueError(
"The length of left_chunk must be the same as length of chunk_size."
)
left_chunk_train_eff = left_chunk[chunk_size_index]
else:
chunk_size_train_eff = chunk_size
left_chunk_train_eff = left_chunk
return chunk_size_train_eff, left_chunk_train_eff
def _get_embed_class(self, embed):
# pylint: disable=protected-access
is_embed_using_act_chkpt = isinstance(embed, CheckpointWrapper)
is_embed_fsdp_wrapped = isinstance(embed, FullyShardedDataParallel)
embed_class = embed
if is_embed_using_act_chkpt:
embed_class = embed._checkpoint_wrapped_module
if is_embed_fsdp_wrapped:
embed_class = embed.module
return embed_class
def _forward_embeddings_core(self, input_tensor, masks):
embed_class = self._get_embed_class(self.embed)
assert isinstance(embed_class, NemoConvSubsampling)
input_tensor, masks = self.embed(input_tensor, masks)
return input_tensor, masks
def _position_embedding(self, input_tensor):
pos_k = None
pos_v = None
if self.relative_attention_bias_layer is None:
input_tensor = self.pos_emb(input_tensor) # default to add abs sinusoid embedding
return pos_k, pos_v
def _streaming_mask(self, seq_len, batch_size, chunk_size, left_chunk):
chunk_size_train_eff, left_chunk_train_eff = self._chunk_size_selection(
chunk_size, left_chunk
)
# Create mask matrix for streaming
# S stores start index. if chunksize is 18, s is [0,18,36,....]
chunk_start_idx = np.arange(0, seq_len, chunk_size_train_eff)
# avoid randomness when run evaluation or decoding
if self.training and np.random.rand() > 0.5:
# Either first or last chunk is not complete.
# If only the last one is not complete, EOS is not effective
chunk_start_idx = seq_len - chunk_start_idx
chunk_start_idx = chunk_start_idx[::-1]
chunk_start_idx = chunk_start_idx[:-1]
chunk_start_idx = np.insert(chunk_start_idx, 0, 0)
enc_streaming_mask = (
adaptive_enc_mask(seq_len, chunk_start_idx, left_window=left_chunk_train_eff)
.unsqueeze(0)
.expand([batch_size, -1, -1])
)
return enc_streaming_mask
def forward_embeddings(self, xs_pad, masks, chunk_size_nc=None, left_chunk_nc=None):
"""Forwarding the inputs through the top embedding layers
Args:
xs_pad: torch.Tensor
input tensor
masks: torch.Tensor
input mask
chunk_size_nc: (optional, default is None) chunk size for non-causal layers
left_chunk_nc: (optional, default is None) # of left chunks for non-causal layers
"""
# pylint: disable=R0915
# get new lens.
seq_len = int(self.compute_lens_change(xs_pad.shape[1]))
if seq_len <= 0:
raise ValueError(
f"""The squence length after time reduction is invalid: {seq_len}.
Your input feature is too short. Consider filtering out the very
short sentence from data loader""",
)
batch_size = xs_pad.shape[0]
enc_streaming_mask = self._streaming_mask(
seq_len, batch_size, self.chunk_size, self.left_chunk
)
if xs_pad.is_cuda:
enc_streaming_mask = enc_streaming_mask.cuda()
xs_pad = xs_pad.cuda()
input_tensor = xs_pad
input_tensor, masks = self._forward_embeddings_core(input_tensor, masks)
streaming_mask = enc_streaming_mask
if streaming_mask is not None and masks is not None:
hs_mask = masks & streaming_mask
elif masks is not None:
hs_mask = masks
else:
hs_mask = streaming_mask
if chunk_size_nc is not None:
enc_streaming_mask_nc = self._streaming_mask(
seq_len, batch_size, chunk_size_nc, left_chunk_nc
)
if xs_pad.is_cuda:
enc_streaming_mask_nc = enc_streaming_mask_nc.cuda()
if masks is not None:
hs_mask_nc = masks & enc_streaming_mask_nc
else:
hs_mask_nc = enc_streaming_mask_nc
else:
hs_mask_nc = None
pos_k, pos_v = self._position_embedding(input_tensor)
if chunk_size_nc is None:
return input_tensor, pos_k, pos_v, hs_mask, masks
return input_tensor, pos_k, pos_v, hs_mask, masks, hs_mask_nc
def get_offset(self):
"""Returns offset used when retaining inputs for decoding.
This is essentially, how many additional frames have to be added to
the front-end CNN input to ensure it can produce a single output.
So if the "padding" parameter is 0, typically offset will be > 0.
"""
return get_offset(self.input_layer, self.time_reduction)
def get_offset(input_layer: str, time_reduction: int):
"""Get an offset. We will use the offset for determining #frames of a subsampled feature.
Args:
input_layer (str): Type of an input layer
time_reduction (int): time reduction factor for downsampling a feature
Returns:
int: offset
"""
if input_layer in ("conv2d", "nemo_conv") and time_reduction == 4:
return 3
if input_layer in ("conv2d",) and time_reduction == 6:
return 1
if input_layer in ("conv2d", "nemo_conv") and time_reduction == 8:
return 7
return 0
class ConformerEncoder(TransformerEncoderBase):
"""ConformerEncoder module.
see original paper for more details:
https://arxiv.org/abs/2005.08100
Please set causal = True in streaming model
Args:
input_size: int
input feature dimension.
chunk_size: int, list(int)
Number of frames for each chunk
This variable can take 2 forms:
int: Used for inference, or single chunk size training
list(int) : Used only for variable chunk size training
Some examples for the 2 cases:
chunk_size = 12
chunk_size = [6, 8, 12, 24]
left_chunk: int, list(int)
Number of chunks used for masking in streaming mode.
This variable can take 2 forms:
int: Used for inference, or single chunk size training
list(int) : Used only for variable chunk size training. When
chunk_size is a list, left_chunk must be a list with same length.
Some examples for the 2 cases:
left_chunk = 6
left_chunk = [12, 9, 6, 3]
left_chunk: int
number of chunks used for masking in streaming mode.
num_lang: int
This parameter is used to store the number of languages in the lang_dict,
only used for multiseed/multilingual models. default None.
attention_dim: int, optional
attention dimension. default 256.
attention_heads: int, optional
the number of heads. default 4
linear_units:
the number of units of position-wise feed forward.
default 2048
num_block:
number of Transformer layer. default 6
dropout_rate: float, optional
dropout rate. default 0.1
input_layer: str, optional
input layer type before Conformer,
one of ["linear", "conv2d", "custom", "vgg2l", "embed"],
default "conv2d"
causal: bool, optional
if set to True, convolution have no access
to future frames. default False.
batch_norm: bool, optional
if set to True, apply batchnorm before activation
in ConvModule layer of the conformer.
default False
cnn_out: int, optional
the number of CNN channels before Conformer.
default -1.
cnn_layer_norm: bool, optional
layer norm between Conformer and the first CNN.
default False.
ext_pw_out_channel: int, optional
the number of channel for CNN
before depthwise_seperable_CNN.
If 0 then use linear. default 0.
ext_pw_kernel_size: int, optional
kernel size of N before depthwise_seperable_CNN.
only work for ext_pw_out_channel > 0.
default 1
depthwise_seperable_out_channel: int, optional
the number of channel for
depthwise_seperable_CNN.
default 256.
depthwise_multiplier: int, optional
the number of multiplier for
depthwise_seperable_CNN.
default 1.
chunk_se: int, optional
0 for offline SE.
1 for streaming SE, where mean is computed
by accumulated history until current chunk_se.
2 for streaming SE, where mean is computed
by only the current chunk.
default 0.
kernel_size: int, optional
the number of kernels for depthwise_seperable_CNN.
default 3.
activation: str, optional
FeedForward block activation.
one of ["relu", "swish", "sigmoid"]
default "relu".
conv_activation: str, optional
activation function used in ConvModule part
of the conformer, default "relu".
conv_glu_type: str, otional
activation used use glu in depthwise_seperable_CNN,
default "sigmoid"
bias_in_glu: bool, optional
if set to True, use additive bias in the weight module
before GLU. default True
linear_glu_in_convm: bool, optional
if set to True, use GLULinear module,
otherwise, used GLUPointWiseConv module.
default to False.
attention_glu_type: str
only work for glu_in_attention !=0
default "swish".
export: bool, optional
if set to True, it remove the padding from convolutional layers
and allow the onnx conversion for inference.
default False.
activation_checkpointing: str, optional
a dictionarry of {"module","interval","offload"}, where
"module": str
accept ["transformer", "attention"] to select
which module should do activation checkpointing.
"interval": int, default 1,
interval of applying activation checkpointing,
interval = 1 means that we apply checkpointing
on every layer (if activation), otherwise,
we apply it every x interval.
"offload": bool, default False,
if set to True, we offload activation to cpu and
reload it during backward, otherwise,
we recalculate activation in backward.
default "".
extra_layer_output_idx: int
the layer index to be exposed.
relative_attention_bias_args: dict, optional
use more efficient scalar bias-based relative multihead attention (Q*K^T + B)
implemented in cmb.basics.embedding.[T5/ALiBi]RelativeAttentionLogitBias
usage: relative_attention_bias_args={"type": t5/alibi}
additional method-specific arguments can be provided (see transformer_base.py)
time_reduction: int optional
time reduction factor
default 4
use_pt_scaled_dot_product_attention: whether to use pytorch scaled dot product attention
in training.
Default: False
nemo_conv_settings: dict, optional
A dictionary of settings for NeMo Subsampling.
default: None
usage: nemo_conv_settings=
{
"subsampling":
dw_striding/striding/dw_striding_conv1d/striding_conv1d,
"conv_channels": int,
"subsampling_conv_chunking_factor": int,
"is_causal": True/False
}
conv2d_extra_padding: str, optional
Add extra padding in conv2d subsampling layers. Choices are
(feat, feat_time, none, True)
Default: none
replication_pad_for_subsample_embedding: For batched-streaming decoding, use
"replication" padding for the cache at start of utterance.
Default: False
attention_group_size: int, optional
the number of groups to use for attention, default 1 (Multi-Head Attention),
1 = typical Multi-Head Attention,
1 < attention_group_size < attention_heads = Grouped-Query Attention
attention_group_size = attenion_heads = Multi-Query Attention
"""
extra_multi_layer_output_idxs: List[int]
def __init__( # pylint: disable-all
self,
input_size,
chunk_size,
left_chunk,
num_lang=None,
attention_dim=256,
attention_heads=4,
linear_units=2048,
num_blocks=6,
dropout_rate=0.1,
input_layer="nemo_conv",
causal=True,
batch_norm=False,
cnn_out=-1,
cnn_layer_norm=False,
ext_pw_out_channel=0,
ext_pw_kernel_size=1,
depthwise_seperable_out_channel=256,
depthwise_multiplier=1,
chunk_se=0,
kernel_size=3,
activation="relu",
conv_activation="relu",
conv_glu_type="sigmoid",
bias_in_glu=True,
linear_glu_in_convm=False,
attention_glu_type="swish",
export=False,
extra_layer_output_idx=-1,
extra_multi_layer_output_idxs=[],
activation_checkpointing="",
relative_attention_bias_args=None,
time_reduction=4,
use_pt_scaled_dot_product_attention=False,
nemo_conv_settings=None,
conv2d_extra_padding: Literal["feat", "feat_time", "none", True] = "none",
replication_pad_for_subsample_embedding=False,
attention_group_size=1,
encoder_embedding_config=None,
):
super().__init__(
input_size,
chunk_size,
left_chunk,
attention_dim,
attention_heads,
input_layer,
cnn_out,
cnn_layer_norm,
time_reduction,
dropout_rate=dropout_rate,
relative_attention_bias_args=relative_attention_bias_args,
positional_dropout_rate=0.0,
nemo_conv_settings=nemo_conv_settings,
conv2d_extra_padding=conv2d_extra_padding,
attention_group_size=attention_group_size,
encoder_embedding_config=encoder_embedding_config,
)
self.num_blocks = num_blocks
self.num_lang = num_lang
self.kernel_size = kernel_size
self.embed = embedding_checkpoint_wrapper(activation_checkpointing)(self.embed)
self.replication_pad_for_subsample_embedding: bool = replication_pad_for_subsample_embedding
assert self.num_heads % attention_group_size == 0, "attention_group_size must divide n_head"
self.num_heads_k = self.num_heads // attention_group_size
self.encoders = repeat(
num_blocks,
lambda i: encoder_checkpoint_wrapper(
activation_checkpointing, ConformerEncoderLayer, i
)(
ConformerEncoderLayer(
d_model=attention_dim,
ext_pw_out_channel=ext_pw_out_channel,
depthwise_seperable_out_channel=depthwise_seperable_out_channel,
depthwise_multiplier=depthwise_multiplier,
n_head=attention_heads,
d_ffn=linear_units,
ext_pw_kernel_size=ext_pw_kernel_size,
kernel_size=kernel_size,
dropout_rate=dropout_rate,
causal=causal,
batch_norm=batch_norm,
activation=activation,
chunk_se=chunk_se,
chunk_size=chunk_size,
conv_activation=conv_activation,
conv_glu_type=conv_glu_type,
bias_in_glu=bias_in_glu,
linear_glu_in_convm=linear_glu_in_convm,
attention_glu_type=attention_glu_type,
activation_checkpointing=attn_checkpointing(activation_checkpointing, i),
export=export,
use_pt_scaled_dot_product_attention=use_pt_scaled_dot_product_attention,
attn_group_sizes=attention_group_size,
)
),
)
self.extra_layer_output_idx = extra_layer_output_idx
self.extra_multi_layer_output_idxs = extra_multi_layer_output_idxs
# Make a zeros scalar we can use in get_initial_state to determine
# the device and the needed dtype:
self.register_buffer("dev_type", torch.zeros(()), persistent=False)
def init_relative_attention_bias(self, input_tensor):
if self.relative_attention_bias_layer:
return self.relative_attention_bias_layer(input_tensor)
def calculate_hs_mask(self, xs_pad, device, mask):
max_audio_length = xs_pad.shape[1]
batch_size = xs_pad.shape[0]
enc_streaming_mask = self._streaming_mask(
max_audio_length, batch_size, self.chunk_size, self.left_chunk
)
enc_streaming_mask = enc_streaming_mask.to(device)
if mask is None:
return enc_streaming_mask
feature_lens = mask.sum(1)
padding_length = feature_lens
pad_mask = (
torch.arange(0, max_audio_length, device=device).expand(padding_length.size(0), -1)
< padding_length.unsqueeze(1)
)
pad_mask = pad_mask.unsqueeze(1)
pad_mask = pad_mask & enc_streaming_mask
return pad_mask
@torch.jit.ignore
def forward(self, xs_pad, masks):
"""Conformer Forward function
Args:
xs_pad: torch.Tensor
input tensor
masks: torch.Tensor
post-embedding input lengths
"""
xs_pad = self.encoder_embedding(xs_pad)
input_tensor, pos_k, pos_v, hs_mask, masks = self.forward_embeddings(xs_pad, masks)
unfolded = False
ori_bz, seq_len, D = input_tensor.shape
max_seq_len = 500 #maxium position for absolute positional encoding
if seq_len > max_seq_len:
# audio sequence is longer than max_seq_len, unfold it into chunks of max_seq_len
unfolded = True
# the unfold op will drop residual frames, pad it to the multiple of max_seq_len
if seq_len % max_seq_len > 0:
chunk_pad_size = max_seq_len - (seq_len % max_seq_len)
else:
chunk_pad_size = 0
if chunk_pad_size > 0:
input_tensor_pad = F.pad(input_tensor, (0, 0, 0, chunk_pad_size), "constant", 0)
input_tensor = input_tensor_pad.to(input_tensor.device)
input_tensor = unfold_tensor(input_tensor, max_seq_len)
if masks is not None:
# revise hs_mask here because the previous calculated hs_mask did not consider extra pad
subsampled_pad_mask = masks.squeeze(1) # [bz, subsampled_unmask_seq_len]
extra_padded_subsamlped_pad_mask = F.pad(subsampled_pad_mask, (0, chunk_pad_size), "constant", False) # extra padding to the pad mask
extra_padded_subsamlped_pad_mask = extra_padded_subsamlped_pad_mask.unsqueeze(-1).float()
masks_unfold = unfold_tensor(extra_padded_subsamlped_pad_mask, max_seq_len) # unfold the pad mask like we did to the input tensor
masks_unfold = masks_unfold.squeeze(-1).bool() # unfold op does not support bool tensor
else:
masks_unfold = None
hs_mask = self.calculate_hs_mask(input_tensor, input_tensor.device, masks_unfold) # calculate hs_mask based on the unfolded pad mask
layer_emb = None
relative_attention_bias = self.init_relative_attention_bias(input_tensor)
_simplified_path = (
self.extra_layer_output_idx == -1
and relative_attention_bias is None
)
if _simplified_path:
input_tensor, *_ = self.encoders(input_tensor, pos_k, pos_v, hs_mask)
else:
for i, layer in enumerate(self.encoders):
input_tensor, _, _, _ = layer(
input_tensor,
pos_k,
pos_v,
hs_mask,
relative_attention_bias=relative_attention_bias,
)
if i == self.extra_layer_output_idx:
layer_emb = input_tensor
if unfolded:
embed_dim = input_tensor.shape[-1]
input_tensor = input_tensor.reshape(ori_bz, -1, embed_dim)
# if we ever padded before unfolding, we need to remove the padding
if chunk_pad_size > 0:
input_tensor = input_tensor[:, :-chunk_pad_size, :]
return input_tensor, masks #, layer_emb
def gradient_checkpointing_enable(self):
pass