|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Phi-4-MM model.""" |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers import AutoConfig, AutoModelForCausalLM, PretrainedConfig |
|
|
|
from .configuration_phi4mm import Phi4MMConfig |
|
from .processing_phi4mm import InputMode |
|
from .vision_siglip_navit import get_siglip_vision_model |
|
from .speech_conformer_encoder import ConformerEncoder |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "TBA" |
|
_CONFIG_FOR_DOC = "Phi4MMConfig" |
|
|
|
|
|
_IMAGE_SPECIAL_TOKEN_ID = 200010 |
|
_AUDIO_SPECIAL_TOKEN_ID = 200011 |
|
_COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE = [-9999, -1] |
|
_COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE = [float('-inf'), -10000] |
|
|
|
|
|
class Phi4MMImageEmbedding(nn.Module): |
|
"""Image embedding.""" |
|
|
|
def __init__(self, config: PretrainedConfig, **kwargs) -> None: |
|
super().__init__() |
|
|
|
|
|
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size |
|
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): |
|
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop |
|
self.drop = nn.Dropout(embd_drop) |
|
else: |
|
self.drop = None |
|
|
|
logger.info(f"create image tower {config.img_processor}") |
|
enable_gradient_checkpointing = kwargs.get('enable_gradient_checkpointing', False) |
|
|
|
|
|
self.img_processor = get_siglip_vision_model( |
|
_flash_attn_2_enabled=config._attn_implementation == 'flash_attention_2' |
|
) |
|
|
|
pe_weight = self.img_processor.embeddings.position_embedding.weight |
|
L, D = pe_weight.size() |
|
H = int(math.sqrt(L)) |
|
assert H**2 == L |
|
if H % 2 != 0: |
|
self.img_processor_padding = nn.ReflectionPad2d((0, 1, 0, 1)) |
|
H += 1 |
|
image_dim_out = D |
|
|
|
self.num_img_tokens = (H//2)**2 |
|
self.base_feat_height_target = H |
|
|
|
if enable_gradient_checkpointing: |
|
self.img_processor.encoder.gradient_checkpointing = True |
|
|
|
self.image_dim_out = image_dim_out |
|
self.img_sizes = None |
|
self.image_attention_mask = None |
|
|
|
|
|
self.use_hd_transform = kwargs.get('use_hd_transform', False) |
|
self.with_learnable_separator = kwargs.get('with_learnable_separator', False) |
|
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub') |
|
self.freeze_img_processor = kwargs.get('freeze_img_processor', False) |
|
self.crop_size = kwargs.get('crop_size', 336) |
|
logger.info(f'freeze_img_processor = {self.freeze_img_processor}') |
|
|
|
|
|
self.image_token_compression_cls = kwargs.get('image_token_compression_cls', None) |
|
if self.image_token_compression_cls == 'avg_pool_2d': |
|
self.image_token_compression = nn.AvgPool2d(kernel_size=2, stride=2) |
|
self.base_feat_height_reduction = 1 |
|
self.base_feat_height_target = self.base_feat_height_target // 2 |
|
elif self.image_token_compression_cls is None: |
|
self.image_token_compression = None |
|
self.base_feat_height_reduction = 2 |
|
else: |
|
raise NotImplementedError(f'image_token_compression_cls = {self.image_token_compression_cls}, not implemented') |
|
|
|
|
|
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value' |
|
if self.with_learnable_separator: |
|
assert self.use_hd_transform, 'learnable separator is only for hd transform' |
|
|
|
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * self.base_feat_height_reduction**2])) |
|
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * self.base_feat_height_reduction**2])) |
|
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}') |
|
|
|
projection_cls = kwargs.get('projection_cls', 'linear') |
|
if projection_cls == 'linear': |
|
self.img_projection = nn.Linear(image_dim_out, hidden_size) |
|
elif projection_cls == 'mlp' and self.use_hd_transform: |
|
dim_projection = hidden_size |
|
depth = 2 |
|
layers = [nn.Linear(image_dim_out * self.base_feat_height_reduction**2, dim_projection)] |
|
for _ in range(1, depth): |
|
layers.extend([nn.GELU(), |
|
nn.Linear(dim_projection, dim_projection)]) |
|
self.img_projection = nn.Sequential(*layers) |
|
elif projection_cls == 'mlp': |
|
|
|
|
|
dim_projection = hidden_size |
|
depth = 2 |
|
layers = [nn.Linear(image_dim_out, dim_projection)] |
|
for _ in range(1, depth): |
|
layers.extend([nn.GELU(), |
|
nn.Linear(dim_projection, dim_projection)]) |
|
self.img_projection = nn.Sequential(*layers) |
|
else: |
|
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') |
|
|
|
self.vocab_size = config.vocab_size |
|
self.img_features = None |
|
|
|
if isinstance(config.img_processor, dict): |
|
self.layer_idx = config.img_processor.get('layer_idx', -2) |
|
self.type_feature = config.img_processor.get('type_feature', 'patch') |
|
else: |
|
self.layer_idx = -2 |
|
self.type_feature = 'patch' |
|
|
|
def set_img_features(self, img_features: torch.FloatTensor) -> None: |
|
self.img_features = img_features |
|
|
|
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None: |
|
self.img_sizes = img_sizes |
|
|
|
def set_img_attn_mask(self, image_attention_mask: torch.FloatTensor) -> None: |
|
self.image_attention_mask = image_attention_mask |
|
|
|
def get_img_features(self, img_embeds: torch.FloatTensor, attention_mask=None) -> torch.FloatTensor: |
|
LAYER_IDX = self.layer_idx |
|
TYPE_FEATURE = self.type_feature |
|
|
|
if self.freeze_img_processor: |
|
with torch.no_grad(): |
|
if attention_mask is not None: |
|
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True, patch_attention_mask=attention_mask) |
|
else: |
|
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) |
|
img_feature = img_processor_output.hidden_states[LAYER_IDX] |
|
else: |
|
if attention_mask is not None: |
|
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True, patch_attention_mask=attention_mask) |
|
else: |
|
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) |
|
img_feature = img_processor_output.hidden_states[LAYER_IDX] |
|
|
|
if TYPE_FEATURE == "patch": |
|
patch_feature = img_feature |
|
if self.image_token_compression is not None: |
|
|
|
width = int(math.sqrt(patch_feature.size(1))) |
|
patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1)) |
|
|
|
patch_feature = patch_feature.permute(0, 3, 1, 2) |
|
if getattr(self, 'img_processor_padding', None) is not None: |
|
patch_feature = self.img_processor_padding(patch_feature) |
|
patch_feature = self.image_token_compression(patch_feature) |
|
|
|
patch_feature = patch_feature.permute(0, 2, 3, 1) |
|
patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1)) |
|
elif getattr(self, 'img_processor_padding', None) is not None: |
|
width = int(math.sqrt(patch_feature.size(1))) |
|
patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1)) |
|
|
|
patch_feature = patch_feature.permute(0, 3, 1, 2) |
|
patch_feature = self.img_processor_padding(patch_feature) |
|
|
|
patch_feature = patch_feature.permute(0, 2, 3, 1) |
|
patch_feature = patch_feature.view(-1, patch_feature.size(1) * patch_feature.size(2), patch_feature.size(-1)) |
|
return patch_feature |
|
|
|
if TYPE_FEATURE == "cls_patch": |
|
if self.image_token_compression is not None: |
|
|
|
patch_feature = img_feature[:, 1:] |
|
cls_feature = img_feature[:, 0] |
|
width = math.sqrt(patch_feature.size(1)) |
|
patch_feature = patch_feature.view(-1, width, width, patch_feature.size(-1)) |
|
patch_feature = self.image_token_compression(patch_feature) |
|
patch_feature = patch_feature.view(-1, patch_feature.size(-2) * patch_feature.size(-1)) |
|
img_feature = torch.cat([cls_feature, patch_feature], dim=1) |
|
return img_feature |
|
|
|
logger.info(f'processed img feature size = {img_feature.size()}') |
|
raise NotImplementedError |
|
|
|
def spatiotemporal_pool(self, x, num_img_tokens, batch_size=1, T=1): |
|
|
|
if self.image_pos_embed is not None: |
|
x = x.view(batch_size * T, -1, x.shape[-1]) |
|
num_tokens = x.shape[-2] |
|
h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5) |
|
assert h * w == num_tokens, 'only support square feature maps for now' |
|
x = x.view(batch_size * T, h, w, x.shape[-1]) |
|
pos_embed = self.image_pos_embed(x) |
|
x = x + pos_embed |
|
x = x.view(batch_size, T * h * w, x.shape[-1]) |
|
|
|
if self.visual_temporal_embed is not None: |
|
visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0]) |
|
x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1]) |
|
|
|
new_x = [] |
|
|
|
spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2) |
|
new_x.append(spatial_avg_pool_x) |
|
|
|
|
|
temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1) |
|
new_x.append(temporal_avg_pool_x) |
|
|
|
x = torch.cat(new_x, dim=1).view(-1, self.image_dim_out) |
|
num_img_tokens += T |
|
return x, num_img_tokens |
|
|
|
def forward(self, input_ids: torch.LongTensor, input_embeds: torch.FloatTensor, image_sizes=None, **kwargs) -> torch.FloatTensor: |
|
|
|
if isinstance(input_ids, tuple): |
|
|
|
input_ids, input_embeds = input_ids |
|
|
|
img_embeds = input_embeds |
|
if image_sizes is None and 'image_sizes' in kwargs: |
|
image_sizes = kwargs['image_sizes'] |
|
img_sizes = image_sizes |
|
|
|
if self.img_features is not None: |
|
img_embeds = self.img_features.clone() |
|
self.img_features = None |
|
|
|
if self.img_sizes is not None: |
|
img_sizes = self.img_sizes |
|
|
|
dtype = self.img_processor.embeddings.patch_embedding.weight.dtype |
|
if img_embeds is not None: |
|
|
|
img_embeds = img_embeds.to(dtype) |
|
|
|
if self.image_attention_mask is not None: |
|
image_attention_mask = self.image_attention_mask.clone() |
|
self.image_attention_mask = None |
|
elif 'image_attention_mask' in kwargs: |
|
image_attention_mask = kwargs['image_attention_mask'] |
|
else: |
|
image_attention_mask = None |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
|
with torch.no_grad(): |
|
positions = torch.nonzero(input_ids == _IMAGE_SPECIAL_TOKEN_ID, as_tuple=False) |
|
positions_tuple = torch.nonzero(input_ids == _IMAGE_SPECIAL_TOKEN_ID, as_tuple=True) |
|
|
|
|
|
fake_image_forward = False |
|
select = False |
|
hd_transform = False |
|
|
|
if isinstance(self.img_projection, nn.Sequential): |
|
target_device = self.img_projection[0].bias.device |
|
target_dtype = self.img_projection[0].bias.dtype |
|
else: |
|
target_device = self.img_projection.bias.device |
|
target_dtype = self.img_projection.bias.dtype |
|
|
|
num_img_tokens = self.num_img_tokens |
|
if len(positions.tolist()) > 0: |
|
if self.use_hd_transform and img_sizes is not None and len(img_sizes): |
|
hd_transform = True |
|
assert img_embeds.ndim == 5, f'(branch 1) img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform' |
|
|
|
|
|
|
|
bs = img_embeds.shape[0] |
|
|
|
if image_attention_mask is not None and len(image_attention_mask) > 0: |
|
img_features = self.get_img_features(img_embeds.flatten(0, 1), attention_mask=image_attention_mask.type(torch.BoolTensor).flatten(0,1).to(target_device)) |
|
else: |
|
img_features = self.get_img_features(img_embeds.flatten(0, 1)) |
|
|
|
base_feat_height_target = self.base_feat_height_target |
|
base_resolution = self.crop_size |
|
base_feat_height_reduction = self.base_feat_height_reduction |
|
|
|
base_feat_height = base_feat_width = int(np.sqrt(img_features.shape[1])) |
|
|
|
assert base_feat_height == base_feat_height_target and base_feat_width == base_feat_height_target, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect {base_feat_height_target} features for hd transform' |
|
|
|
|
|
img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out) |
|
C = self.image_dim_out |
|
H = base_feat_height |
|
|
|
output_imgs = [] |
|
output_len = [] |
|
|
|
if isinstance(img_sizes, torch.Tensor): |
|
img_sizes = img_sizes.view(-1, 2) |
|
for _bs in range(bs): |
|
h, w = img_sizes[_bs] |
|
h = h // base_resolution |
|
w = w // base_resolution |
|
B_ = h * w |
|
|
|
|
|
global_img_feature = img_features[_bs, :1] |
|
|
|
|
|
glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//base_feat_height_reduction,base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction*base_feat_height_reduction*C).contiguous() |
|
temp_glb_GN = self.sub_GN.repeat(1, H//base_feat_height_reduction, 1, 1) |
|
|
|
|
|
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,base_feat_height_reduction*base_feat_height_reduction*C) |
|
|
|
|
|
sub_img = img_features[_bs, 1:] |
|
|
|
|
|
sub_img = sub_img[:B_] |
|
|
|
|
|
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//base_feat_height_reduction,base_feat_height_reduction,H//base_feat_height_reduction,base_feat_height_reduction,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,base_feat_height_reduction*base_feat_height_reduction*C).contiguous() |
|
sub_img = sub_img.reshape(1, h, w, base_feat_height // base_feat_height_reduction, base_feat_width // base_feat_height_reduction, -1).permute(0,1,3,2,4,5).reshape(1,h*base_feat_height//base_feat_height_reduction,w*base_feat_width//base_feat_height_reduction,base_feat_height_reduction*base_feat_height_reduction*C) |
|
|
|
if image_attention_mask is not None and len(image_attention_mask) > 0: |
|
reshaped_image_attention_mask = image_attention_mask[_bs,1:B_+1,0::2,0::2].reshape(1, h, w, base_feat_height // base_feat_height_reduction, base_feat_width // base_feat_height_reduction).permute(0,1,3,2,4).reshape(1,h*base_feat_height//base_feat_height_reduction,w*base_feat_width//base_feat_height_reduction) |
|
useful_height = int(reshaped_image_attention_mask[0,:,0].sum().item()) |
|
useful_width = int(reshaped_image_attention_mask[0,0,:].sum().item()) |
|
sub_img = sub_img[:,:useful_height, :useful_width] |
|
temp_sub_GN = self.sub_GN.repeat(1, useful_height, 1, 1) |
|
temp_len = int(image_attention_mask[_bs,:B_+1,0::2,0::2].sum().item()) + (useful_height+1) + base_feat_height//base_feat_height_reduction |
|
else: |
|
temp_sub_GN = self.sub_GN.repeat(1, h*base_feat_height//base_feat_height_reduction, 1, 1) |
|
temp_len = int((h*w+1)*self.num_img_tokens+ 1 + (h+1)*base_feat_height//base_feat_height_reduction) |
|
|
|
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,base_feat_height_reduction*base_feat_height_reduction*C) |
|
|
|
|
|
|
|
if self.hd_transform_order == 'glb_sub': |
|
output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1)) |
|
elif self.hd_transform_order == 'sub_glb': |
|
output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1)) |
|
else: |
|
raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented') |
|
|
|
|
|
assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}' |
|
output_len.append(temp_len) |
|
|
|
num_img_tokens = output_len |
|
img_set_tensor = [] |
|
for _output_img in output_imgs: |
|
img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype)) |
|
img_set_tensor.append(img_feature_proj) |
|
|
|
|
|
|
|
else: |
|
raise NotImplementedError |
|
select = True |
|
else: |
|
|
|
|
|
if self.training: |
|
img_embeds = torch.zeros(1, 3, self.crop_size, self.crop_size, dtype=target_dtype, device=input_ids.device) |
|
|
|
tt = ( |
|
self.get_img_features(img_embeds) |
|
.to(target_device) |
|
.to(target_dtype) |
|
.reshape(-1, 1024) |
|
) |
|
if self.use_hd_transform: |
|
img_set_tensor = self.img_projection(tt.reshape(-1, self.image_dim_out*self.base_feat_height_reduction**2) * self.glb_GN[0] * self.sub_GN[0, 0]) |
|
else: |
|
img_set_tensor = self.img_projection(tt) |
|
fake_image_forward = True |
|
|
|
|
|
hidden_states = kwargs['wte'](input_ids) |
|
|
|
if select: |
|
if hd_transform: |
|
|
|
|
|
|
|
|
|
|
|
assert all([_img_set_tensor.shape[0] == 1 for _img_set_tensor in img_set_tensor]), 'img_set_tensor should have shape (1, N_tokens, C)' |
|
|
|
merged_img_set_tensor = torch.cat(img_set_tensor, dim=1).squeeze(0) |
|
merged_img_set_tensor = merged_img_set_tensor.to(hidden_states.dtype).to(hidden_states.device) |
|
|
|
|
|
with torch.autocast(device_type=hidden_states.device.type, enabled=False): |
|
new_hidden_states = hidden_states.index_put( |
|
indices=positions_tuple, |
|
values=merged_img_set_tensor, |
|
accumulate=False |
|
) |
|
hidden_states = new_hidden_states |
|
else: |
|
raise NotImplementedError |
|
|
|
if fake_image_forward and self.training: |
|
hidden_states = hidden_states + (0 * img_set_tensor[0].to(hidden_states.dtype).to(hidden_states.device)).sum() |
|
|
|
if self.drop is not None: |
|
hidden_states = self.drop(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class Phi4MMAudioEmbedding(nn.Module): |
|
"""Audio embedding.""" |
|
|
|
def __init__(self, config: PretrainedConfig, **kwargs) -> None: |
|
super().__init__() |
|
self.config = config |
|
|
|
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size |
|
|
|
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): |
|
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop |
|
self.drop = nn.Dropout(embd_drop) |
|
else: |
|
self.drop = None |
|
|
|
audio_dim_out = None |
|
logger.info(f"create audio processor {config.audio_processor}") |
|
self.layer_idx = -2 |
|
|
|
if isinstance(config.audio_processor, dict) and config.audio_processor.get('name', None) == "cascades": |
|
encoder_config = config.audio_processor.get("config", None) |
|
assert encoder_config is not None |
|
self.encoder = ConformerEncoder(**encoder_config) |
|
|
|
|
|
|
|
|
|
self.encoder.post_init({}) |
|
|
|
audio_dim_out = encoder_config["attention_dim"] |
|
n_mels = encoder_config["input_size"] |
|
else: |
|
raise NotImplementedError |
|
|
|
assert audio_dim_out is not None, "Remember to set values for audio_dim_out" |
|
self.audio_dim_out = audio_dim_out |
|
self.audio_dim_in = n_mels |
|
|
|
self.freeze_audio_processor = kwargs.get('freeze_audio_processor', False) |
|
logger.info(f'freeze_audio_processor = {self.freeze_audio_processor}') |
|
|
|
self.downsample_rate = kwargs.get('downsample_rate', 1) |
|
|
|
enable_gradient_checkpointing = kwargs.get('enable_gradient_checkpointing', False) |
|
if enable_gradient_checkpointing: |
|
self.encoder.gradient_checkpointing_enable() |
|
logger.info(f'gradient checkpointing enabled for audio processor') |
|
|
|
projection_cls = kwargs.get('projection_cls', 'linear') |
|
if projection_cls == 'linear': |
|
self.audio_projection = nn.Linear(audio_dim_out, hidden_size) |
|
elif projection_cls == 'mlp': |
|
|
|
|
|
dim_projection = hidden_size |
|
depth = 2 |
|
self.linear_downsample_rate = self.downsample_rate |
|
|
|
layers_for_speech = [nn.Linear(audio_dim_out * self.linear_downsample_rate, dim_projection)] |
|
for _ in range(1, depth): |
|
layers_for_speech.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)]) |
|
audio_projection_for_speech = nn.Sequential(*layers_for_speech) |
|
|
|
layers_for_vision = [nn.Linear(audio_dim_out * self.linear_downsample_rate, dim_projection)] |
|
for _ in range(1, depth): |
|
layers_for_vision.extend([nn.GELU(), nn.Linear(dim_projection, dim_projection)]) |
|
audio_projection_for_vision = nn.Sequential(*layers_for_vision) |
|
|
|
self.audio_projection = nn.ModuleDict({ |
|
'speech': audio_projection_for_speech, |
|
'vision': audio_projection_for_vision |
|
}) |
|
else: |
|
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') |
|
|
|
self.vocab_size = config.vocab_size |
|
self.input_embeds = None |
|
self.audio_embed_sizes = None |
|
|
|
def post_init(self, audio_config): |
|
|
|
if audio_config.get('name', None) == "cascades": |
|
init_model_config = audio_config.get("init_model", {}) |
|
self.encoder.post_init(init_model_config) |
|
|
|
|
|
if "init_model" in audio_config: |
|
audio_config.pop("init_model") |
|
|
|
def set_audio_embeds(self, input_embeds: torch.FloatTensor) -> None: |
|
self.input_embeds = input_embeds |
|
|
|
def set_audio_embed_sizes(self, audio_embed_sizes: torch.LongTensor) -> None: |
|
self.audio_embed_sizes = audio_embed_sizes |
|
|
|
def get_audio_features(self, input_embeds: torch.FloatTensor, audio_attention_mask: torch.Tensor, audio_projection_mode: str='speech'): |
|
|
|
if self.freeze_audio_processor: |
|
with torch.no_grad(): |
|
audio_features, masks = self.encoder(input_embeds, audio_attention_mask) |
|
else: |
|
audio_features, masks = self.encoder(input_embeds, audio_attention_mask) |
|
|
|
if isinstance(self.audio_projection, nn.Sequential): |
|
audio_set_tensor = self.audio_projection(audio_features) |
|
elif isinstance(self.audio_projection, nn.ModuleDict): |
|
audio_set_tensor = self.audio_projection[audio_projection_mode](audio_features) |
|
else: |
|
raise NotImplementedError |
|
|
|
return audio_set_tensor |
|
|
|
def forward(self, input_ids: torch.LongTensor, input_embeds: torch.FloatTensor, audio_embed_sizes=None, audio_attention_mask=None, audio_projection_mode='speech', **kwargs) -> torch.FloatTensor: |
|
''' |
|
arguments: |
|
input_ids: input text ids (B, U) |
|
input_embeds: audio features (B, T, D) B: num audios in a sequence |
|
''' |
|
if self.input_embeds is not None: |
|
input_embeds = self.input_embeds.clone() |
|
if self.audio_embed_sizes is not None: |
|
audio_embed_sizes = self.audio_embed_sizes.clone() |
|
|
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
MAX_INPUT_ID = int(1e9) |
|
|
|
with torch.no_grad(): |
|
positions = torch.nonzero(input_ids == _AUDIO_SPECIAL_TOKEN_ID, as_tuple=False) |
|
positions_tuple = torch.nonzero(input_ids == _AUDIO_SPECIAL_TOKEN_ID, as_tuple=True) |
|
|
|
if isinstance(self.audio_projection, nn.Sequential): |
|
target_device = self.audio_projection[0].bias.device |
|
target_dtype = self.audio_projection[0].bias.dtype |
|
elif isinstance(self.audio_projection, nn.ModuleDict): |
|
target_device = self.audio_projection[audio_projection_mode][0].bias.device |
|
target_dtype = self.audio_projection[audio_projection_mode][0].bias.dtype |
|
else: |
|
target_device = self.audio_projection.bias.device |
|
target_dtype = self.audio_projection.bias.dtype |
|
|
|
if input_embeds is not None: |
|
input_embeds = input_embeds.to(target_device).to(target_dtype) |
|
|
|
if len(positions.tolist()) > 0: |
|
audio_set_tensor = self.get_audio_features(input_embeds, audio_attention_mask, audio_projection_mode) |
|
else: |
|
|
|
|
|
if self.training: |
|
audio_embeds = torch.zeros(1, 500, self.audio_dim_in).to(target_device).to(target_dtype) |
|
audio_attention_mask = audio_embeds.new_ones(audio_embeds.size()[:2]).long() |
|
audio_set_tensor = self.get_audio_features(audio_embeds, audio_attention_mask, audio_projection_mode) |
|
|
|
hidden_states = kwargs['wte'](input_ids) |
|
|
|
if len(positions.tolist()) > 0: |
|
|
|
assert audio_embed_sizes.sum().item() == len(positions), \ |
|
f"please ensure the encoder outputs have the same length as defined in input_ids! \n audio_embed_sizes.sum().item(): {audio_embed_sizes.sum().item()} \n len(positions): {len(positions)} \n audio_embed_sizes: {audio_embed_sizes} \n positions: {positions} \n input_ids.shape \n {input_ids.shape}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
merged_audio_set_tensor = torch.cat([ |
|
audio_set_tensor[i, :audio_embed_sizes[i], :] |
|
for i in range(len(audio_embed_sizes)) |
|
], dim=0) |
|
merged_audio_set_tensor = merged_audio_set_tensor.to(hidden_states.dtype).to(hidden_states.device) |
|
|
|
|
|
with torch.autocast(device_type=hidden_states.device.type, enabled=False): |
|
new_hidden_states = hidden_states.index_put( |
|
indices=positions_tuple, |
|
values=merged_audio_set_tensor, |
|
accumulate=False |
|
) |
|
hidden_states = new_hidden_states |
|
else: |
|
if self.training: |
|
hidden_states = hidden_states + (0 * audio_set_tensor[:,0].to(hidden_states.dtype).to(hidden_states.device)).sum() |
|
|
|
if self.drop is not None: |
|
hidden_states = self.drop(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class Phi4MMImageAudioEmbedding(nn.Module): |
|
"""Image-audio embedding.""" |
|
|
|
def __init__(self, config: PretrainedConfig, **kwargs) -> None: |
|
super().__init__() |
|
|
|
self.vocab_size = config.vocab_size |
|
|
|
self.image_input_id = kwargs.get('image_input_id', -1) |
|
self.audio_input_id = kwargs.get('audio_input_id', -10000) |
|
assert self.image_input_id != self.audio_input_id, 'image_input_id and audio_input_id should be different' |
|
|
|
self.image_embd_layer_kwargs = kwargs['image_embd_layer'] |
|
self.image_embed = Phi4MMImageEmbedding(config, **self.image_embd_layer_kwargs) |
|
self.audio_embd_layer_kwargs = kwargs['audio_embd_layer'] |
|
self.audio_embed = Phi4MMAudioEmbedding(config, **self.audio_embd_layer_kwargs) |
|
|
|
self.input_image_embeds = None |
|
self.image_sizes = None |
|
self.image_attention_mask = None |
|
self.input_audio_embeds = None |
|
self.audio_embed_sizes = None |
|
|
|
def post_init(self, audio_config): |
|
|
|
|
|
self.audio_embed.post_init(audio_config) |
|
|
|
def set_input_image_embeds(self, input_image_embeds: torch.FloatTensor) -> None: |
|
self.input_image_embeds = input_image_embeds |
|
|
|
def set_image_sizes(self, image_sizes: torch.LongTensor) -> None: |
|
self.image_sizes = image_sizes |
|
|
|
def set_img_attn_mask(self, image_attention_mask: torch.FloatTensor) -> None: |
|
self.image_attention_mask = image_attention_mask |
|
|
|
def set_input_audio_embeds(self, input_audio_embeds: torch.FloatTensor) -> None: |
|
self.input_audio_embeds = input_audio_embeds |
|
|
|
def set_audio_embed_sizes(self, audio_embed_sizes: torch.LongTensor) -> None: |
|
self.audio_embed_sizes = audio_embed_sizes |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
input_embeds, |
|
input_image_embeds: Optional[torch.FloatTensor]=None, |
|
input_audio_embeds: Optional[torch.FloatTensor]=None, |
|
image_sizes=None, |
|
image_attention_mask=None, |
|
audio_embed_sizes=None, |
|
audio_attention_mask=None, |
|
audio_projection_mode='speech', |
|
wte=None, |
|
) -> torch.FloatTensor: |
|
MAX_INPUT_ID = int(1e9) |
|
assert -MAX_INPUT_ID < self.audio_input_id < self.image_input_id |
|
|
|
|
|
|
|
|
|
if self.input_image_embeds is not None: |
|
assert input_image_embeds is None |
|
input_image_embeds = self.input_image_embeds.clone() |
|
|
|
|
|
|
|
|
|
|
|
self.input_image_embeds = None |
|
|
|
if self.image_sizes is not None: |
|
assert image_sizes is None |
|
image_sizes = self.image_sizes |
|
|
|
if self.input_audio_embeds is not None: |
|
assert input_audio_embeds is None |
|
input_audio_embeds = self.input_audio_embeds.clone() |
|
self.input_audio_embeds = None |
|
|
|
if self.audio_embed_sizes is not None: |
|
assert audio_embed_sizes is None |
|
audio_embed_sizes = self.audio_embed_sizes.clone() |
|
|
|
if self.image_attention_mask is not None: |
|
assert image_attention_mask is None |
|
image_attention_mask = self.image_attention_mask.clone() |
|
self.image_attention_mask = None |
|
|
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
|
|
|
|
with torch.no_grad(): |
|
new_input_ids = input_ids.clone() |
|
new_input_ids[(input_ids >= _COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE[0]) & |
|
(input_ids <= _COMPATIBLE_IMAGE_SPECIAL_TOKEN_ID_RANGE[1])] = _IMAGE_SPECIAL_TOKEN_ID |
|
new_input_ids[(input_ids >= _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE[0]) & |
|
(input_ids <= _COMPATIBLE_AUDIO_SPECIAL_TOKEN_ID_RANGE[1])] = _AUDIO_SPECIAL_TOKEN_ID |
|
input_ids = new_input_ids |
|
|
|
with torch.no_grad(): |
|
image_position_mask = input_ids == _IMAGE_SPECIAL_TOKEN_ID |
|
non_image_position_mask = ~image_position_mask |
|
|
|
assert input_embeds is None |
|
if self.training: |
|
assert input_image_embeds is not None or input_audio_embeds is not None |
|
|
|
if input_image_embeds is not None: |
|
image_hidden_states = self.image_embed( |
|
input_ids=input_ids, |
|
input_embeds=input_image_embeds, |
|
image_sizes=image_sizes, |
|
wte=wte, |
|
image_attention_mask=image_attention_mask |
|
) |
|
if input_audio_embeds is not None: |
|
audio_hidden_states = self.audio_embed( |
|
input_ids=input_ids, |
|
input_embeds=input_audio_embeds, |
|
audio_embed_sizes=audio_embed_sizes, |
|
audio_attention_mask=audio_attention_mask, |
|
wte=wte, |
|
audio_projection_mode=audio_projection_mode, |
|
) |
|
|
|
|
|
|
|
|
|
if input_image_embeds is not None and input_audio_embeds is not None: |
|
dtype = image_hidden_states.dtype |
|
hidden_states = image_hidden_states * image_position_mask.to(dtype).unsqueeze(-1) + audio_hidden_states * non_image_position_mask.to(dtype).unsqueeze(-1) |
|
elif input_image_embeds is not None: |
|
hidden_states = image_hidden_states |
|
elif input_audio_embeds is not None: |
|
hidden_states = audio_hidden_states |
|
else: |
|
assert wte is not None |
|
hidden_states = wte(input_ids) |
|
|
|
return hidden_states |
|
|
|
|
|
|
|
class Phi4MMRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Phi4MMRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
class Phi4MMRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
|
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) |
|
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids, seq_len=None): |
|
|
|
self.inv_freq.to(x.device) |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() |
|
sin = emb.sin() |
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
class Phi4MMSuScaledRotaryEmbedding(Phi4MMRotaryEmbedding): |
|
def __init__(self, dim, config, device=None): |
|
warnings.warn( |
|
"The class Phi4MMSuScaledRotaryEmbedding is deprecated and will be removed in version 5 of Transformers. Please" |
|
" use Phi4MMLongRoPEScaledRotaryEmbedding instead.", |
|
FutureWarning, |
|
) |
|
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) |
|
|
|
self.short_factor = config.rope_scaling["short_factor"] |
|
self.long_factor = config.rope_scaling["long_factor"] |
|
self.original_max_position_embeddings = config.original_max_position_embeddings |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids, seq_len=None): |
|
seq_len = torch.max(position_ids) + 1 |
|
if seq_len > self.original_max_position_embeddings: |
|
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) |
|
else: |
|
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) |
|
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim |
|
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
scale = self.max_position_embeddings / self.original_max_position_embeddings |
|
if scale <= 1.0: |
|
scaling_factor = 1.0 |
|
else: |
|
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) |
|
cos = emb.cos() * scaling_factor |
|
sin = emb.sin() * scaling_factor |
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
class Phi4MMYarnScaledRotaryEmbedding(Phi4MMRotaryEmbedding): |
|
def __init__(self, dim, config, device=None): |
|
warnings.warn( |
|
"The class Phi4MMYarnScaledRotaryEmbedding is deprecated and will be removed in version 5 of Transformers", |
|
FutureWarning, |
|
) |
|
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) |
|
|
|
self.short_factor = config.rope_scaling["short_factor"] |
|
self.long_factor = config.rope_scaling["long_factor"] |
|
self.original_max_position_embeddings = config.original_max_position_embeddings |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids, seq_len=None): |
|
seq_len = torch.max(position_ids) + 1 |
|
if seq_len > self.original_max_position_embeddings: |
|
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) |
|
else: |
|
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) |
|
|
|
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim |
|
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) |
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
|
scale = self.max_position_embeddings / self.original_max_position_embeddings |
|
if scale <= 1.0: |
|
scaling_factor = 1.0 |
|
else: |
|
scaling_factor = 0.1 * math.log(scale) + 1.0 |
|
|
|
cos = emb.cos() * scaling_factor |
|
sin = emb.sin() * scaling_factor |
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
class Phi4MMLongRoPEScaledRotaryEmbedding(Phi4MMRotaryEmbedding): |
|
def __init__(self, dim, config, device=None): |
|
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) |
|
|
|
self.short_factor = config.rope_scaling["short_factor"] |
|
self.long_factor = config.rope_scaling["long_factor"] |
|
self.original_max_position_embeddings = config.original_max_position_embeddings |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids, seq_len=None): |
|
seq_len = seq_len or torch.max(position_ids) + 1 |
|
if seq_len > self.original_max_position_embeddings: |
|
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) |
|
else: |
|
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) |
|
|
|
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim |
|
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) |
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
|
|
device_type = x.device.type |
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
|
scale = self.max_position_embeddings / self.original_max_position_embeddings |
|
if scale <= 1.0: |
|
scaling_factor = 1.0 |
|
else: |
|
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) |
|
|
|
cos = emb.cos() * scaling_factor |
|
sin = emb.sin() * scaling_factor |
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
|
rotary_dim = cos.shape[-1] |
|
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:] |
|
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:] |
|
|
|
q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1) |
|
k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1) |
|
return q_embed, k_embed |
|
|
|
|
|
class Phi4MMMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.config = config |
|
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) |
|
|
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
up_states = self.gate_up_proj(hidden_states) |
|
|
|
gate, up_states = up_states.chunk(2, dim=-1) |
|
up_states = up_states * self.activation_fn(gate) |
|
|
|
return self.down_proj(up_states) |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class Phi4MMAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: Phi4MMConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.original_max_position_embeddings = config.original_max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.rope_scaling = config.rope_scaling |
|
self.rotary_ndims = int(self.head_dim * config.partial_rotary_factor) |
|
self.is_causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False) |
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
if self.rope_scaling is None: |
|
self.rotary_emb = Phi4MMRotaryEmbedding( |
|
self.rotary_ndims, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
if scaling_type == "longrope": |
|
self.rotary_emb = Phi4MMLongRoPEScaledRotaryEmbedding(self.rotary_ndims, self.config) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.") |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
query_pos = self.num_heads * self.head_dim |
|
query_states = qkv[..., :query_pos] |
|
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] |
|
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights += causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class Phi4MMFlashAttention2(Phi4MMAttention): |
|
""" |
|
Phi-4-MM flash attention module. This module inherits from `Phi4MMAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
|
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
query_pos = self.num_heads * self.head_dim |
|
query_states = qkv[..., :query_pos] |
|
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] |
|
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] |
|
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
rotary_seq_len = ( |
|
max(kv_seq_len, position_ids[:, -1].max().item() + 1) if position_ids is not None else kv_seq_len |
|
) |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len, position_ids=position_ids) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_dropout = self.attention_dropout if self.training else 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if query_states.dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.qkv_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
attn_output = _flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
position_ids=position_ids, |
|
dropout=attn_dropout, |
|
sliding_window=getattr(self.config, "sliding_window", None), |
|
use_top_left_mask=self._flash_attn_uses_top_left_mask, |
|
is_causal=self.is_causal, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
|
|
|
|
class Phi4MMSdpaAttention(Phi4MMAttention): |
|
""" |
|
Phi4MM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`Phi4MMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"Phi4MMModel is using Phi4MMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
query_pos = self.num_heads * self.head_dim |
|
query_states = qkv[..., :query_pos] |
|
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] |
|
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
|
|
|
|
|
|
is_causal = True if causal_mask is None and q_len > 1 else False |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
PHI4MM_ATTENTION_CLASSES = { |
|
"eager": Phi4MMAttention, |
|
"flash_attention_2": Phi4MMFlashAttention2, |
|
"sdpa": Phi4MMSdpaAttention, |
|
} |
|
|
|
|
|
class Phi4MMDecoderLayer(nn.Module): |
|
def __init__(self, config: Phi4MMConfig, layer_idx: int): |
|
super().__init__() |
|
|
|
self.config = config |
|
self.self_attn = PHI4MM_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) |
|
|
|
self.mlp = Phi4MMMLP(config) |
|
self.input_layernorm = Phi4MMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) |
|
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) |
|
self.post_attention_layernorm = Phi4MMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): |
|
input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range |
|
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence |
|
kwargs (`dict`, *optional*): |
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code |
|
into the model |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
attn_outputs, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = residual + self.resid_attn_dropout(attn_outputs) |
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + self.resid_mlp_dropout(hidden_states) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
PHI4MM_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`Phi4MMConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Phi-4-MM model outputting raw hidden-states without any specific head on top.", |
|
PHI4MM_START_DOCSTRING, |
|
) |
|
class Phi4MMPreTrainedModel(PreTrainedModel): |
|
config_class = Phi4MMConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Phi4MMDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
_version = "0.0.5" |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
PHI4MM_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance, see our |
|
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Phi-4-MM model outputting raw hidden-states without any specific head on top.", |
|
PHI4MM_START_DOCSTRING, |
|
) |
|
class Phi4MMModel(Phi4MMPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi4MMDecoderLayer`] |
|
|
|
Args: |
|
config: Phi4MMConfig |
|
""" |
|
|
|
def __init__(self, config: Phi4MMConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.embed_dropout = nn.Dropout(config.embd_pdrop) |
|
|
|
self.embed_tokens_extend = None |
|
if isinstance(config.embd_layer, dict): |
|
embedding_config = { |
|
'embedding_cls': config.embd_layer['embedding_cls'], |
|
**config.embd_layer |
|
} |
|
self.embed_tokens_extend = Phi4MMImageAudioEmbedding(config, **embedding_config) |
|
|
|
self.layers = nn.ModuleList( |
|
[Phi4MMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = Phi4MMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(PHI4MM_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
input_image_embeds: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[torch.LongTensor] = None, |
|
image_attention_mask=None, |
|
input_audio_embeds: Optional[torch.FloatTensor] = None, |
|
audio_embed_sizes=None, |
|
audio_attention_mask=None, |
|
audio_projection_mode=None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
return_legacy_cache = False |
|
if use_cache and not isinstance(past_key_values, Cache): |
|
return_legacy_cache = True |
|
if past_key_values is None: |
|
past_key_values = DynamicCache() |
|
else: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
logger.warning_once( |
|
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " |
|
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " |
|
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens_extend( |
|
input_ids=input_ids, |
|
input_embeds=inputs_embeds, |
|
input_image_embeds=input_image_embeds, |
|
input_audio_embeds=input_audio_embeds, |
|
image_sizes=image_sizes, |
|
image_attention_mask=image_attention_mask, |
|
audio_embed_sizes=audio_embed_sizes, |
|
audio_attention_mask=audio_attention_mask, |
|
audio_projection_mode=audio_projection_mode, |
|
wte=self.embed_tokens, |
|
) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if return_legacy_cache: |
|
next_cache = next_cache.to_legacy_cache() |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) |
|
|
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and not (using_static_cache or using_sliding_window_cache) |
|
and not output_attentions |
|
): |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
sliding_window=self.config.sliding_window, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
|
|
if using_sliding_window_cache or using_static_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
|
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
device=device, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
config=self.config, |
|
past_key_values=past_key_values, |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type == "cuda" |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
@staticmethod |
|
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
config: Phi4MMConfig, |
|
past_key_values: Cache, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
device (`torch.device`): |
|
The device to plcae the 4D attention mask on. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
config (`Phi4MMConfig`): |
|
The model's configuration class |
|
past_key_values (`Cache`): |
|
The cache class that is being used currently to generate |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device |
|
) |
|
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
if config.sliding_window is not None: |
|
|
|
|
|
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: |
|
sliding_attend_mask = torch.arange(target_length, device=device) <= ( |
|
cache_position.reshape(-1, 1) - config.sliding_window |
|
) |
|
diagonal_attend_mask.bitwise_or_(sliding_attend_mask) |
|
causal_mask *= diagonal_attend_mask |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
if attention_mask.shape[-1] > target_length: |
|
attention_mask = attention_mask[:, :target_length] |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
return causal_mask |
|
|
|
|
|
class Phi4MMForCausalLM(Phi4MMPreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Phi4MMModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
assert getattr(config, "vision_lora", None) is not None |
|
from peft import LoraConfig, get_peft_model |
|
vision_lora_config = LoraConfig( |
|
r=config.vision_lora['r'], |
|
lora_alpha=config.vision_lora['lora_alpha'], |
|
target_modules=config.vision_lora['layer'], |
|
lora_dropout=config.vision_lora['dp'], |
|
task_type="CAUSAL_LM", |
|
) |
|
peft_model = get_peft_model(self.model, vision_lora_config, adapter_name="vision") |
|
self.config.vision_lora['r'] = config.vision_lora['r'] |
|
self.config.vision_lora['lora_alpha'] = config.vision_lora['lora_alpha'] |
|
self.config.vision_lora['layer'] = config.vision_lora['layer'] |
|
self.config.vision_lora['dp'] = config.vision_lora['dp'] |
|
|
|
assert getattr(config, "speech_lora", None) is not None |
|
speech_lora_config = LoraConfig( |
|
r=config.speech_lora['r'], |
|
lora_alpha=config.speech_lora['lora_alpha'], |
|
target_modules=config.speech_lora['layer'], |
|
lora_dropout=config.speech_lora['dp'], |
|
task_type="CAUSAL_LM", |
|
) |
|
peft_model.base_model.active_adapter.append("speech") |
|
peft_model.add_adapter("speech", speech_lora_config) |
|
self.config.speech_lora['r'] = config.speech_lora['r'] |
|
self.config.speech_lora['lora_alpha'] = config.speech_lora['lora_alpha'] |
|
self.config.speech_lora['layer'] = config.speech_lora['layer'] |
|
self.config.speech_lora['dp'] = config.speech_lora['dp'] |
|
|
|
def set_lora_adapter(self, adapter_name) -> None: |
|
from peft.tuners.lora.layer import LoraLayer |
|
for module in self.modules(): |
|
if isinstance(module, LoraLayer): |
|
if module.merged: |
|
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") |
|
module.unmerge() |
|
module.set_adapter(adapter_name) |
|
module._disable_adapters = False |
|
|
|
def unset_lora_adapter(self) -> None: |
|
|
|
|
|
from peft.tuners.lora.layer import LoraLayer |
|
for module in self.modules(): |
|
if isinstance(module, LoraLayer): |
|
|
|
|
|
for layer_name in module.adapter_layer_names: |
|
layer = getattr(module, layer_name) |
|
layer.requires_grad_(False) |
|
module._disable_adapters = True |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
|
|
@add_start_docstrings_to_model_forward(PHI4MM_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
input_image_embeds: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[torch.LongTensor] = None, |
|
image_attention_mask=None, |
|
input_audio_embeds: Optional[torch.FloatTensor] = None, |
|
audio_embed_sizes=None, |
|
audio_attention_mask=None, |
|
input_mode=None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
num_logits_to_keep: int = 0, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
num_logits_to_keep (`int`, *optional*): |
|
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all |
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that |
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, Phi4MMForCausalLM |
|
|
|
>>> model = Phi4MMForCausalLM.from_pretrained("TBA") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("TBA") |
|
|
|
>>> prompt = "This is an example script ." |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum' |
|
```""" |
|
if ( |
|
use_cache |
|
and self.config.rope_scaling |
|
and cache_position is not None |
|
and cache_position[0] == self.config.original_max_position_embeddings |
|
): |
|
logger.warning( |
|
f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed." |
|
) |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if isinstance(input_mode, torch.Tensor): |
|
assert len(input_mode) == 1 |
|
input_mode = input_mode[0].item() |
|
input_mode = InputMode(input_mode) |
|
|
|
if input_mode in [InputMode.VISION_SPEECH, InputMode.VISION]: |
|
self.set_lora_adapter('vision') |
|
audio_projection_mode = 'vision' |
|
elif input_mode == InputMode.SPEECH: |
|
self.set_lora_adapter('speech') |
|
audio_projection_mode = 'speech' |
|
elif input_mode == InputMode.LANGUAGE: |
|
self.unset_lora_adapter() |
|
audio_projection_mode = 'speech' |
|
else: |
|
raise ValueError(f"Invalid input_mode: {input_mode}") |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
input_image_embeds=input_image_embeds, |
|
image_sizes=image_sizes, |
|
image_attention_mask=image_attention_mask, |
|
input_audio_embeds=input_audio_embeds, |
|
audio_embed_sizes=audio_embed_sizes, |
|
audio_attention_mask=audio_attention_mask, |
|
audio_projection_mode=audio_projection_mode, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits, labels, self.vocab_size) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
input_image_embeds=None, |
|
image_sizes=None, |
|
image_attention_mask=None, |
|
input_audio_embeds=None, |
|
audio_embed_sizes=None, |
|
audio_attention_mask=None, |
|
input_mode=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=True, |
|
num_logits_to_keep=None, |
|
**kwargs |
|
): |
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
past_key_values |
|
and self.config.rope_scaling |
|
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1 |
|
): |
|
past_length = cache_position[0] |
|
if past_length <= self.config.original_max_position_embeddings: |
|
past_key_values = None |
|
|
|
model_inputs = super().prepare_inputs_for_generation( |
|
input_ids=input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
input_image_embeds=input_image_embeds, |
|
image_sizes=image_sizes, |
|
image_attention_mask=image_attention_mask, |
|
input_audio_embeds=input_audio_embeds, |
|
audio_embed_sizes=audio_embed_sizes, |
|
audio_attention_mask=audio_attention_mask, |
|
input_mode=input_mode, |
|
cache_position=cache_position, |
|
position_ids=position_ids, |
|
use_cache=use_cache, |
|
num_logits_to_keep=num_logits_to_keep, |
|
**kwargs, |
|
) |
|
return model_inputs |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The [`Phi4MMModel`] with a sequence classification head on top (linear layer). |
|
|
|
[`Phi4MMForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
PHI4MM_START_DOCSTRING, |
|
) |
|
|
|
class Phi4MMForSequenceClassification(Phi4MMPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = Phi4MMModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(PHI4MM_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
model_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = model_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) |
|
|
|
if not return_dict: |
|
output = (pooled_logits,) + model_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=model_outputs.past_key_values, |
|
hidden_states=model_outputs.hidden_states, |
|
attentions=model_outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
[`Phi4MMModel`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for |
|
Named-Entity-Recognition (NER) tasks. |
|
""", |
|
PHI4MM_START_DOCSTRING, |
|
) |
|
|
|
class Phi4MMForTokenClassification(Phi4MMPreTrainedModel): |
|
def __init__(self, config: Phi4MMConfig): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.model = Phi4MMModel(config) |
|
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: |
|
classifier_dropout = config.classifier_dropout |
|
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: |
|
classifier_dropout = config.hidden_dropout |
|
else: |
|
classifier_dropout = 0.1 |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(PHI4MM_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=TokenClassifierOutput, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**deprecated_arguments, |
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
model_outputs = self.model( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = model_outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(logits.device) |
|
batch_size, seq_length = labels.shape |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + model_outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=model_outputs.hidden_states, |
|
attentions=model_outputs.attentions, |
|
) |
|
|
|
|
|
AutoConfig.register("phi4mm", Phi4MMConfig) |
|
AutoModelForCausalLM.register(Phi4MMConfig, Phi4MMForCausalLM) |
|
Phi4MMConfig.register_for_auto_class() |
|
Phi4MMForCausalLM.register_for_auto_class("AutoModelForCausalLM") |
|
|