|
import os |
|
import requests |
|
import torch |
|
from PIL import Image |
|
import soundfile |
|
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig |
|
|
|
model_path = './' |
|
|
|
kwargs = {} |
|
kwargs['torch_dtype'] = torch.bfloat16 |
|
|
|
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) |
|
print(processor.tokenizer) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
torch_dtype='auto', |
|
_attn_implementation='flash_attention_2', |
|
).cuda() |
|
print("model.config._attn_implementation:", model.config._attn_implementation) |
|
|
|
generation_config = GenerationConfig.from_pretrained(model_path, 'generation_config.json') |
|
|
|
user_prompt = '<|user|>' |
|
assistant_prompt = '<|assistant|>' |
|
prompt_suffix = '<|end|>' |
|
|
|
|
|
prompt = f'{user_prompt}what is the answer for 1+1? Explain it.{prompt_suffix}{assistant_prompt}' |
|
print(f'>>> Prompt\n{prompt}') |
|
inputs = processor(prompt, images=None, return_tensors='pt').to('cuda:0') |
|
|
|
generate_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=1000, |
|
generation_config=generation_config, |
|
) |
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :] |
|
response = processor.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
print(f'>>> Response\n{response}') |
|
|
|
|
|
|
|
prompt = f'{user_prompt}<|image_1|>What is shown in this image?{prompt_suffix}{assistant_prompt}' |
|
url = 'https://www.ilankelman.org/stopsigns/australia.jpg' |
|
print(f'>>> Prompt\n{prompt}') |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
inputs = processor(text=prompt, images=image, return_tensors='pt').to('cuda:0') |
|
generate_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=1000, |
|
generation_config=generation_config, |
|
) |
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :] |
|
response = processor.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
print(f'>>> Response\n{response}') |
|
|
|
|
|
|
|
chat = [ |
|
{'role': 'user', 'content': f'<|image_1|>What is shown in this image?'}, |
|
{ |
|
'role': 'assistant', |
|
'content': "The image depicts a street scene with a prominent red stop sign in the foreground. The background showcases a building with traditional Chinese architecture, characterized by its red roof and ornate decorations. There are also several statues of lions, which are common in Chinese culture, positioned in front of the building. The street is lined with various shops and businesses, and there's a car passing by.", |
|
}, |
|
{'role': 'user', 'content': 'What is so special about this image'}, |
|
] |
|
url = 'https://www.ilankelman.org/stopsigns/australia.jpg' |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
prompt = processor.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) |
|
|
|
if prompt.endswith('<|endoftext|>'): |
|
prompt = prompt.rstrip('<|endoftext|>') |
|
|
|
print(f'>>> Prompt\n{prompt}') |
|
|
|
inputs = processor(prompt, [image], return_tensors='pt').to('cuda:0') |
|
generate_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=1000, |
|
generation_config=generation_config, |
|
) |
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :] |
|
response = processor.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
print(f'>>> Response\n{response}') |
|
|
|
|
|
images = [] |
|
placeholder = '' |
|
for i in range(1, 5): |
|
url = f'https://image.slidesharecdn.com/azureintroduction-191206101932/75/Introduction-to-Microsoft-Azure-Cloud-{i}-2048.jpg' |
|
images.append(Image.open(requests.get(url, stream=True).raw)) |
|
placeholder += f'<|image_{i}|>' |
|
|
|
messages = [ |
|
{'role': 'user', 'content': placeholder + 'Summarize the deck of slides.'}, |
|
] |
|
|
|
prompt = processor.tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
print(f'>>> Prompt\n{prompt}') |
|
|
|
inputs = processor(prompt, images, return_tensors='pt').to('cuda:0') |
|
|
|
generation_args = { |
|
'max_new_tokens': 1000, |
|
'temperature': 0.0, |
|
'do_sample': False, |
|
} |
|
|
|
generate_ids = model.generate( |
|
**inputs, **generation_args, generation_config=generation_config, |
|
) |
|
|
|
|
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :] |
|
response = processor.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
|
|
print(response) |
|
|
|
|
|
|
|
|
|
|
|
|
|
AUDIO_FILE_1 = 'examples/what_is_the_traffic_sign_in_the_image.wav' |
|
AUDIO_FILE_2 = 'examples/what_is_shown_in_this_image.wav' |
|
|
|
if not os.path.exists(AUDIO_FILE_1): |
|
raise FileNotFoundError(f'Please prepare the audio file {AUDIO_FILE_1} before running the following code.') |
|
|
|
prompt = f'{user_prompt}<|image_1|><|audio_1|>{prompt_suffix}{assistant_prompt}' |
|
url = 'https://www.ilankelman.org/stopsigns/australia.jpg' |
|
print(f'>>> Prompt\n{prompt}') |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
audio = soundfile.read(AUDIO_FILE_1) |
|
inputs = processor(text=prompt, images=[image], audios=[audio], return_tensors='pt').to('cuda:0') |
|
generate_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=1000, |
|
generation_config=generation_config, |
|
) |
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :] |
|
response = processor.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
print(f'>>> Response\n{response}') |
|
|
|
|
|
speech_prompt = "Based on the attached audio, generate a comprehensive text transcription of the spoken content." |
|
prompt = f'{user_prompt}<|audio_1|>{speech_prompt}{prompt_suffix}{assistant_prompt}' |
|
|
|
print(f'>>> Prompt\n{prompt}') |
|
audio = soundfile.read(AUDIO_FILE_1) |
|
inputs = processor(text=prompt, audios=[audio], return_tensors='pt').to('cuda:0') |
|
generate_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=1000, |
|
generation_config=generation_config, |
|
) |
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :] |
|
response = processor.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
print(f'>>> Response\n{response}') |
|
|
|
if not os.path.exists(AUDIO_FILE_2): |
|
raise FileNotFoundError(f'Please prepare the audio file {AUDIO_FILE_2} before running the following code.') |
|
|
|
audio_1 = soundfile.read(AUDIO_FILE_2) |
|
audio_2 = soundfile.read(AUDIO_FILE_1) |
|
chat = [ |
|
{'role': 'user', 'content': f'<|audio_1|>Based on the attached audio, generate a comprehensive text transcription of the spoken content.'}, |
|
{ |
|
'role': 'assistant', |
|
'content': "What is shown in this image.", |
|
}, |
|
{'role': 'user', 'content': f'<|audio_2|>Based on the attached audio, generate a comprehensive text transcription of the spoken content.'}, |
|
] |
|
prompt = processor.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) |
|
|
|
if prompt.endswith('<|endoftext|>'): |
|
prompt = prompt.rstrip('<|endoftext|>') |
|
|
|
print(f'>>> Prompt\n{prompt}') |
|
|
|
inputs = processor(text=prompt, audios=[audio_1, audio_2], return_tensors='pt').to('cuda:0') |
|
generate_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=1000, |
|
generation_config=generation_config, |
|
) |
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :] |
|
response = processor.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
print(f'>>> Response\n{response}') |
|
|
|
|
|
|
|
audio_1 = soundfile.read(AUDIO_FILE_2) |
|
audio_2 = soundfile.read(AUDIO_FILE_1) |
|
chat = [ |
|
{'role': 'user', 'content': f'<|image_1|><|audio_1|>'}, |
|
{ |
|
'role': 'assistant', |
|
'content': "The image depicts a street scene with a prominent red stop sign in the foreground. The background showcases a building with traditional Chinese architecture, characterized by its red roof and ornate decorations. There are also several statues of lions, which are common in Chinese culture, positioned in front of the building. The street is lined with various shops and businesses, and there's a car passing by.", |
|
}, |
|
{'role': 'user', 'content': f'<|audio_2|>'}, |
|
] |
|
url = 'https://www.ilankelman.org/stopsigns/australia.jpg' |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
prompt = processor.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) |
|
|
|
if prompt.endswith('<|endoftext|>'): |
|
prompt = prompt.rstrip('<|endoftext|>') |
|
|
|
print(f'>>> Prompt\n{prompt}') |
|
|
|
inputs = processor(text=prompt, images=[image], audios=[audio_1, audio_2], return_tensors='pt').to('cuda:0') |
|
generate_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=1000, |
|
generation_config=generation_config, |
|
) |
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1] :] |
|
response = processor.batch_decode( |
|
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
)[0] |
|
print(f'>>> Response\n{response}') |
|
|