Phi-4-multimodal-instruct / sample_finetune_vision.py
garg-amit's picture
Added model files
d93d2f6
"""
finetune Phi-4-multimodal-instruct on an image task
scipy==1.15.1
peft==0.13.2
backoff==2.2.1
transformers==4.47.0
accelerate==1.3.0
"""
import argparse
import json
import os
import tempfile
import zipfile
from pathlib import Path
import torch
from accelerate import Accelerator
from accelerate.utils import gather_object
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from PIL import Image
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
BatchFeature,
Trainer,
TrainingArguments,
)
DEFAULT_INSTSRUCTION = "Answer with the option's letter from the given choices directly."
_IGNORE_INDEX = -100
_TRAIN_SIZE = 8000
_EVAL_SIZE = 500
_MAX_TRAINING_LENGTH = 8192
class PmcVqaTrainDataset(Dataset):
def __init__(self, processor, data_size, instruction=DEFAULT_INSTSRUCTION):
# Download the file
file_path = hf_hub_download(
repo_id='xmcmic/PMC-VQA', # repository name
filename='images_2.zip', # file to download
repo_type='dataset', # specify it's a dataset repo
)
# file_path will be the local path where the file was downloaded
print(f'File downloaded to: {file_path}')
# unzip to temp folder
self.image_folder = Path(tempfile.mkdtemp())
with zipfile.ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall(self.image_folder)
data_files = {
'train': 'https://huggingface.co/datasets/xmcmic/PMC-VQA/resolve/main/train_2.csv',
}
split = 'train' if data_size is None else f'train[:{data_size}]'
self.annotations = load_dataset('xmcmic/PMC-VQA', data_files=data_files, split=split)
self.processor = processor
self.instruction = instruction
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
"""
{'index': 35,
'Figure_path': 'PMC8253797_Fig4_11.jpg',
'Caption': 'A slightly altered cell . (c-c‴) A highly altered cell as seen from 4 different angles . Note mitochondria/mitochondrial networks (green), Golgi complexes (red), cell nuclei (light blue) and the cell outline (yellow).',
'Question': ' What color is used to label the Golgi complexes in the image?',
'Choice A': ' A: Green ',
'Choice B': ' B: Red ',
'Choice C': ' C: Light blue ',
'Choice D': ' D: Yellow',
'Answer': 'B',
'split': 'train'}
"""
annotation = self.annotations[idx]
image = Image.open(self.image_folder / 'figures' / annotation['Figure_path'])
question = annotation['Question']
choices = [annotation[f'Choice {chr(ord("A") + i)}'] for i in range(4)]
user_message = {
'role': 'user',
'content': '<|image_1|>' + '\n'.join([question] + choices + [self.instruction]),
}
prompt = self.processor.tokenizer.apply_chat_template(
[user_message], tokenize=False, add_generation_prompt=True
)
answer = f'{annotation["Answer"]}<|end|><|endoftext|>'
inputs = self.processor(prompt, images=[image], return_tensors='pt')
answer_ids = self.processor.tokenizer(answer, return_tensors='pt').input_ids
input_ids = torch.cat([inputs.input_ids, answer_ids], dim=1)
labels = torch.full_like(input_ids, _IGNORE_INDEX)
labels[:, -answer_ids.shape[1] :] = answer_ids
if input_ids.size(1) > _MAX_TRAINING_LENGTH:
input_ids = input_ids[:, :_MAX_TRAINING_LENGTH]
labels = labels[:, :_MAX_TRAINING_LENGTH]
if torch.all(labels == _IGNORE_INDEX).item():
# workaround to make sure loss compute won't fail
labels[:, -1] = self.processor.tokenizer.eos_token_id
return {
'input_ids': input_ids,
'labels': labels,
'input_image_embeds': inputs.input_image_embeds,
'image_attention_mask': inputs.image_attention_mask,
'image_sizes': inputs.image_sizes,
}
def __del__(self):
__import__('shutil').rmtree(self.image_folder)
class PmcVqaEvalDataset(Dataset):
def __init__(
self, processor, data_size, instruction=DEFAULT_INSTSRUCTION, rank=0, world_size=1
):
# Download the file
file_path = hf_hub_download(
repo_id='xmcmic/PMC-VQA', # repository name
filename='images_2.zip', # file to download
repo_type='dataset', # specify it's a dataset repo
)
# file_path will be the local path where the file was downloaded
print(f'File downloaded to: {file_path}')
# unzip to temp folder
self.image_folder = Path(tempfile.mkdtemp())
with zipfile.ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall(self.image_folder)
data_files = {
'test': 'https://huggingface.co/datasets/xmcmic/PMC-VQA/resolve/main/test_2.csv',
}
split = 'test' if data_size is None else f'test[:{data_size}]'
self.annotations = load_dataset(
'xmcmic/PMC-VQA', data_files=data_files, split=split
).shard(num_shards=world_size, index=rank)
self.processor = processor
self.instruction = instruction
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
"""
{'index': 62,
'Figure_path': 'PMC8253867_Fig2_41.jpg',
'Caption': 'CT pulmonary angiogram reveals encasement and displacement of the left anterior descending coronary artery ( blue arrows ).',
'Question': ' What is the name of the artery encased and displaced in the image? ',
'Choice A': ' A: Right Coronary Artery ',
'Choice B': ' B: Left Anterior Descending Coronary Artery ',
'Choice C': ' C: Circumflex Coronary Artery ',
'Choice D': ' D: Superior Mesenteric Artery ',
'Answer': 'B',
'split': 'test'}
"""
annotation = self.annotations[idx]
image = Image.open(self.image_folder / 'figures' / annotation['Figure_path'])
question = annotation['Question']
choices = [annotation[f'Choice {chr(ord("A") + i)}'] for i in range(4)]
user_message = {
'role': 'user',
'content': '<|image_1|>' + '\n'.join([question] + choices + [self.instruction]),
}
prompt = self.processor.tokenizer.apply_chat_template(
[user_message], tokenize=False, add_generation_prompt=True
)
answer = annotation['Answer']
inputs = self.processor(prompt, images=[image], return_tensors='pt')
unique_id = f'{annotation["index"]:010d}'
return {
'id': unique_id,
'input_ids': inputs.input_ids,
'input_image_embeds': inputs.input_image_embeds,
'image_attention_mask': inputs.image_attention_mask,
'image_sizes': inputs.image_sizes,
'answer': answer,
}
def __del__(self):
__import__('shutil').rmtree(self.image_folder)
def pad_sequence(sequences, padding_side='right', padding_value=0):
"""
Pad a list of sequences to the same length.
sequences: list of tensors in [seq_len, *] shape
"""
assert padding_side in ['right', 'left']
max_size = sequences[0].size()
trailing_dims = max_size[1:]
max_len = max(len(seq) for seq in sequences)
batch_size = len(sequences)
output = sequences[0].new_full((batch_size, max_len) + trailing_dims, padding_value)
for i, seq in enumerate(sequences):
length = seq.size(0)
if padding_side == 'right':
output.data[i, :length] = seq
else:
output.data[i, -length:] = seq
return output
def cat_with_pad(tensors, dim, padding_value=0):
"""
cat along dim, while pad to max for all other dims
"""
ndim = tensors[0].dim()
assert all(
t.dim() == ndim for t in tensors[1:]
), 'All tensors must have the same number of dimensions'
out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
out_size[dim] = sum(t.shape[dim] for t in tensors)
output = tensors[0].new_full(out_size, padding_value)
index = 0
for t in tensors:
# Create a slice list where every dimension except dim is full slice
slices = [slice(0, t.shape[d]) for d in range(ndim)]
# Update only the concat dimension slice
slices[dim] = slice(index, index + t.shape[dim])
output[slices] = t
index += t.shape[dim]
return output
def pmc_vqa_collate_fn(batch):
input_ids_list = []
labels_list = []
input_image_embeds_list = []
image_attention_mask_list = []
image_sizes_list = []
for inputs in batch:
input_ids_list.append(inputs['input_ids'][0])
labels_list.append(inputs['labels'][0])
input_image_embeds_list.append(inputs['input_image_embeds'])
image_attention_mask_list.append(inputs['image_attention_mask'])
image_sizes_list.append(inputs['image_sizes'])
input_ids = pad_sequence(input_ids_list, padding_side='right', padding_value=0)
labels = pad_sequence(labels_list, padding_side='right', padding_value=0)
attention_mask = (input_ids != 0).long()
input_image_embeds = cat_with_pad(input_image_embeds_list, dim=0)
image_attention_mask = cat_with_pad(image_attention_mask_list, dim=0)
image_sizes = torch.cat(image_sizes_list)
return BatchFeature(
{
'input_ids': input_ids,
'labels': labels,
'attention_mask': attention_mask,
'input_image_embeds': input_image_embeds,
'image_attention_mask': image_attention_mask,
'image_sizes': image_sizes,
'input_mode': 1, # vision mode
}
)
def pmc_vqa_eval_collate_fn(batch):
input_ids_list = []
input_image_embeds_list = []
image_attention_mask_list = []
image_sizes_list = []
all_unique_ids = []
all_answers = []
for inputs in batch:
input_ids_list.append(inputs['input_ids'][0])
input_image_embeds_list.append(inputs['input_image_embeds'])
image_attention_mask_list.append(inputs['image_attention_mask'])
image_sizes_list.append(inputs['image_sizes'])
all_unique_ids.append(inputs['id'])
all_answers.append(inputs['answer'])
input_ids = pad_sequence(input_ids_list, padding_side='left', padding_value=0)
attention_mask = (input_ids != 0).long()
input_image_embeds = cat_with_pad(input_image_embeds_list, dim=0)
image_attention_mask = cat_with_pad(image_attention_mask_list, dim=0)
image_sizes = torch.cat(image_sizes_list)
return (
all_unique_ids,
all_answers,
BatchFeature(
{
'input_ids': input_ids,
'attention_mask': attention_mask,
'input_image_embeds': input_image_embeds,
'image_attention_mask': image_attention_mask,
'image_sizes': image_sizes,
'input_mode': 1, # vision mode
}
),
)
def create_model(model_name_or_path, use_flash_attention=False):
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16 if use_flash_attention else torch.float32,
_attn_implementation='flash_attention_2' if use_flash_attention else 'sdpa',
trust_remote_code=True,
).to('cuda')
# remove parameters irrelevant to vision tasks
del model.model.embed_tokens_extend.audio_embed # remove audio encoder
for layer in model.model.layers:
# remove audio lora
del layer.mlp.down_proj.lora_A.speech
del layer.mlp.down_proj.lora_B.speech
del layer.mlp.gate_up_proj.lora_A.speech
del layer.mlp.gate_up_proj.lora_B.speech
del layer.self_attn.o_proj.lora_A.speech
del layer.self_attn.o_proj.lora_B.speech
del layer.self_attn.qkv_proj.lora_A.speech
del layer.self_attn.qkv_proj.lora_B.speech
# TODO remove unused vision layers?
return model
@torch.no_grad()
def evaluate(
model, processor, eval_dataset, save_path=None, disable_tqdm=False, eval_batch_size=1
):
rank = int(os.environ.get('RANK', 0))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
model.eval()
all_answers = []
all_generated_texts = []
eval_dataloader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=eval_batch_size,
collate_fn=pmc_vqa_eval_collate_fn,
shuffle=False,
drop_last=False,
num_workers=4,
prefetch_factor=2,
pin_memory=True,
)
for ids, answers, inputs in tqdm(
eval_dataloader, disable=(rank != 0) or disable_tqdm, desc='running eval'
):
all_answers.extend({'id': i, 'answer': a.strip().lower()} for i, a in zip(ids, answers))
inputs = inputs.to(f'cuda:{local_rank}')
generated_ids = model.generate(
**inputs, eos_token_id=processor.tokenizer.eos_token_id, max_new_tokens=64
)
input_len = inputs.input_ids.size(1)
generated_texts = processor.batch_decode(
generated_ids[:, input_len:],
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
all_generated_texts.extend(
{'id': i, 'generated_text': g.strip().lower()} for i, g in zip(ids, generated_texts)
)
# gather outputs from all ranks
all_answers = gather_object(all_answers)
all_generated_texts = gather_object(all_generated_texts)
if rank == 0:
assert len(all_answers) == len(all_generated_texts)
acc = sum(
a['answer'] == g['generated_text'] for a, g in zip(all_answers, all_generated_texts)
) / len(all_answers)
if save_path:
with open(save_path, 'w') as f:
save_dict = {
'answers_unique': all_answers,
'generated_texts_unique': all_generated_texts,
'accuracy': acc,
}
json.dump(save_dict, f)
return acc
return None
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_name_or_path',
type=str,
default='microsoft/Phi-4-multimodal-instruct',
help='Model name or path to load from',
)
parser.add_argument('--use_flash_attention', action='store_true', help='Use Flash Attention')
parser.add_argument('--output_dir', type=str, default='./output/', help='Output directory')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size')
parser.add_argument(
'--batch_size_per_gpu',
type=int,
default=1,
help='Batch size per GPU (adjust this to fit in GPU memory)',
)
parser.add_argument(
'--dynamic_hd',
type=int,
default=36,
help='Number of maximum image crops',
)
parser.add_argument(
'--num_train_epochs', type=int, default=1, help='Number of training epochs'
)
parser.add_argument('--learning_rate', type=float, default=4.0e-5, help='Learning rate')
parser.add_argument('--wd', type=float, default=0.01, help='Weight decay')
parser.add_argument('--no_tqdm', dest='tqdm', action='store_false', help='Disable tqdm')
parser.add_argument('--full_run', action='store_true', help='Run the full training and eval')
args = parser.parse_args()
accelerator = Accelerator()
with accelerator.local_main_process_first():
processor = AutoProcessor.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
dynamic_hd=args.dynamic_hd,
)
model = create_model(
args.model_name_or_path,
use_flash_attention=args.use_flash_attention,
)
# tune vision encoder and lora
model.set_lora_adapter('vision')
for param in model.model.embed_tokens_extend.image_embed.parameters():
param.requires_grad = True
rank = int(os.environ.get('RANK', 0))
world_size = int(os.environ.get('WORLD_SIZE', 1))
train_dataset = PmcVqaTrainDataset(processor, data_size=None if args.full_run else _TRAIN_SIZE)
eval_dataset = PmcVqaEvalDataset(
processor,
data_size=None if args.full_run else _EVAL_SIZE,
rank=rank,
world_size=world_size,
)
num_gpus = accelerator.num_processes
print(f'training on {num_gpus} GPUs')
assert (
args.batch_size % (num_gpus * args.batch_size_per_gpu) == 0
), 'Batch size must be divisible by the number of GPUs'
gradient_accumulation_steps = args.batch_size // (num_gpus * args.batch_size_per_gpu)
if args.use_flash_attention:
fp16 = False
bf16 = True
else:
fp16 = True
bf16 = False
# hard coded training args
training_args = TrainingArguments(
num_train_epochs=args.num_train_epochs,
per_device_train_batch_size=args.batch_size_per_gpu,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={'use_reentrant': False},
gradient_accumulation_steps=gradient_accumulation_steps,
optim='adamw_torch',
adam_beta1=0.9,
adam_beta2=0.95,
adam_epsilon=1e-7,
learning_rate=args.learning_rate,
weight_decay=args.wd,
max_grad_norm=1.0,
lr_scheduler_type='linear',
warmup_steps=50,
logging_steps=10,
output_dir=args.output_dir,
save_strategy='no',
save_total_limit=10,
save_only_model=True,
bf16=bf16,
fp16=fp16,
remove_unused_columns=False,
report_to='none',
deepspeed=None,
disable_tqdm=not args.tqdm,
dataloader_num_workers=4,
ddp_find_unused_parameters=True, # for unused SigLIP layers
)
# eval before fine-tuning
out_path = Path(training_args.output_dir)
out_path.mkdir(parents=True, exist_ok=True)
acc = evaluate(
model,
processor,
eval_dataset,
save_path=out_path / 'eval_before.json',
disable_tqdm=not args.tqdm,
eval_batch_size=args.batch_size_per_gpu,
)
if accelerator.is_main_process:
print(f'Accuracy before finetuning: {acc}')
trainer = Trainer(
model=model,
args=training_args,
data_collator=pmc_vqa_collate_fn,
train_dataset=train_dataset,
)
trainer.train()
trainer.save_model()
accelerator.wait_for_everyone()
# eval after fine-tuning (load saved checkpoint)
# first try to clear GPU memory
del model
del trainer
__import__('gc').collect()
torch.cuda.empty_cache()
# reload the model for inference
model = AutoModelForCausalLM.from_pretrained(
training_args.output_dir,
torch_dtype=torch.bfloat16 if args.use_flash_attention else torch.float32,
trust_remote_code=True,
_attn_implementation='flash_attention_2' if args.use_flash_attention else 'sdpa',
).to('cuda')
acc = evaluate(
model,
processor,
eval_dataset,
save_path=out_path / 'eval_after.json',
disable_tqdm=not args.tqdm,
eval_batch_size=args.batch_size_per_gpu,
)
if accelerator.is_main_process:
print(f'Accuracy after finetuning: {acc}')
if __name__ == '__main__':
main()