nguyenbh
commited on
Commit
·
17df1f5
1
Parent(s):
bd4b39b
Update examples
Browse files
README.md
CHANGED
@@ -330,59 +330,94 @@ After obtaining the Phi-4-Mini-MM-Instruct model checkpoints, users can use this
|
|
330 |
import requests
|
331 |
import torch
|
332 |
import os
|
|
|
333 |
from PIL import Image
|
334 |
-
import soundfile
|
335 |
-
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
336 |
|
337 |
-
|
|
|
338 |
|
|
|
|
|
339 |
model = AutoModelForCausalLM.from_pretrained(
|
340 |
-
|
341 |
device_map="cuda",
|
342 |
torch_dtype="auto",
|
343 |
trust_remote_code=True,
|
344 |
-
|
345 |
).cuda()
|
346 |
|
347 |
-
|
|
|
348 |
|
|
|
349 |
user_prompt = '<|user|>'
|
350 |
assistant_prompt = '<|assistant|>'
|
351 |
prompt_suffix = '<|end|>'
|
352 |
|
|
|
|
|
|
|
353 |
prompt = f'{user_prompt}<|image_1|>What is shown in this image?{prompt_suffix}{assistant_prompt}'
|
354 |
-
url = 'https://www.ilankelman.org/stopsigns/australia.jpg'
|
355 |
print(f'>>> Prompt\n{prompt}')
|
356 |
-
|
|
|
|
|
357 |
inputs = processor(text=prompt, images=image, return_tensors='pt').to('cuda:0')
|
|
|
|
|
358 |
generate_ids = model.generate(
|
359 |
**inputs,
|
360 |
max_new_tokens=1000,
|
361 |
generation_config=generation_config,
|
362 |
)
|
363 |
-
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]
|
364 |
response = processor.batch_decode(
|
365 |
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
366 |
)[0]
|
367 |
print(f'>>> Response\n{response}')
|
368 |
|
369 |
-
|
|
|
|
|
370 |
speech_prompt = "Transcribe the audio to text, and then translate the audio to French. Use <sep> as a separator between the original transcript and the translation."
|
371 |
prompt = f'{user_prompt}<|audio_1|>{speech_prompt}{prompt_suffix}{assistant_prompt}'
|
372 |
-
|
373 |
print(f'>>> Prompt\n{prompt}')
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
)
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
)
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
```
|
387 |
|
388 |
## Responsible AI Considerations
|
|
|
330 |
import requests
|
331 |
import torch
|
332 |
import os
|
333 |
+
import io
|
334 |
from PIL import Image
|
335 |
+
import soundfile as sf
|
336 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
|
337 |
|
338 |
+
# Define model path
|
339 |
+
model_path = "microsoft/Phi-4-multimodal-instruct"
|
340 |
|
341 |
+
# Load model and processor
|
342 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
343 |
model = AutoModelForCausalLM.from_pretrained(
|
344 |
+
model_path,
|
345 |
device_map="cuda",
|
346 |
torch_dtype="auto",
|
347 |
trust_remote_code=True,
|
348 |
+
attn_implementation='flash_attention_2',
|
349 |
).cuda()
|
350 |
|
351 |
+
# Load generation config
|
352 |
+
generation_config = GenerationConfig.from_pretrained(model_path)
|
353 |
|
354 |
+
# Define prompt structure
|
355 |
user_prompt = '<|user|>'
|
356 |
assistant_prompt = '<|assistant|>'
|
357 |
prompt_suffix = '<|end|>'
|
358 |
|
359 |
+
# Part 1: Image Processing
|
360 |
+
print("\n--- IMAGE PROCESSING ---")
|
361 |
+
image_url = 'https://www.ilankelman.org/stopsigns/australia.jpg'
|
362 |
prompt = f'{user_prompt}<|image_1|>What is shown in this image?{prompt_suffix}{assistant_prompt}'
|
|
|
363 |
print(f'>>> Prompt\n{prompt}')
|
364 |
+
|
365 |
+
# Download and open image
|
366 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
367 |
inputs = processor(text=prompt, images=image, return_tensors='pt').to('cuda:0')
|
368 |
+
|
369 |
+
# Generate response
|
370 |
generate_ids = model.generate(
|
371 |
**inputs,
|
372 |
max_new_tokens=1000,
|
373 |
generation_config=generation_config,
|
374 |
)
|
375 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
376 |
response = processor.batch_decode(
|
377 |
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
378 |
)[0]
|
379 |
print(f'>>> Response\n{response}')
|
380 |
|
381 |
+
# Part 2: Audio Processing
|
382 |
+
print("\n--- AUDIO PROCESSING ---")
|
383 |
+
audio_url = "https://voiceage.com/wbsamples/in_mono/Trailer.wav"
|
384 |
speech_prompt = "Transcribe the audio to text, and then translate the audio to French. Use <sep> as a separator between the original transcript and the translation."
|
385 |
prompt = f'{user_prompt}<|audio_1|>{speech_prompt}{prompt_suffix}{assistant_prompt}'
|
|
|
386 |
print(f'>>> Prompt\n{prompt}')
|
387 |
+
|
388 |
+
# Download audio file
|
389 |
+
audio_response = requests.get(audio_url)
|
390 |
+
if audio_response.status_code == 200:
|
391 |
+
# First save audio to a temporary file
|
392 |
+
temp_audio_path = "temp_audio.wav"
|
393 |
+
with open(temp_audio_path, "wb") as f:
|
394 |
+
f.write(audio_response.content)
|
395 |
+
|
396 |
+
# Read using soundfile
|
397 |
+
audio, samplerate = sf.read(temp_audio_path)
|
398 |
+
|
399 |
+
# Process with the model
|
400 |
+
inputs = processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to('cuda:0')
|
401 |
+
|
402 |
+
generate_ids = model.generate(
|
403 |
+
**inputs,
|
404 |
+
max_new_tokens=1000,
|
405 |
+
generation_config=generation_config,
|
406 |
+
)
|
407 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
408 |
+
response = processor.batch_decode(
|
409 |
+
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
410 |
+
)[0]
|
411 |
+
print(f'>>> Response\n{response}')
|
412 |
+
|
413 |
+
# Clean up
|
414 |
+
try:
|
415 |
+
os.remove(temp_audio_path)
|
416 |
+
print(f"Temporary file {temp_audio_path} removed successfully")
|
417 |
+
except Exception as e:
|
418 |
+
print(f"Error removing temporary file: {e}")
|
419 |
+
else:
|
420 |
+
print(f"Failed to download audio file: {audio_response.status_code}")
|
421 |
```
|
422 |
|
423 |
## Responsible AI Considerations
|