File size: 1,871 Bytes
52978a1 e16fd71 52978a1 bfb08ac 52978a1 1bd59c9 52978a1 bfb08ac f7c0d71 52978a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language: en
tags:
- deberta
- deberta-v3
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit
---
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
In DeBERTa V3 we replaced MLM objective with RTD(Replaced Token Detection) objective during pre-training, which significantly improves the model performance. Please check appendix A11 in our paper [DeBERTa](https://arxiv.org/abs/2006.03654) for more details.
This is the DeBERTa V3 small model with 6 layers, 768 hidden size. Total parameters is 143M while Embedding layer take about 98M due to the usage of 128k vocabulary. It's trained with 160GB data.
#### Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m |
|-------------------|-----------|-----------|--------|
| RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 |
| XLNet-base | -/- | -/80.2 | 86.8 |
|DeBERTa-base |93.1/87.2| 86.2/83.1| 88.8|
| **DeBERTa-v3-small** | -/- | -/- | 88.2 |
| DeBERTa-v3-small+SiFT | -/- | -/- | 88.8 |
### Citation
If you find DeBERTa useful for your work, please cite the following paper:
``` latex
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
```
|