--- language: en tags: - deberta - deberta-v3 thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. In DeBERTa V3 we replaced MLM objective with RTD(Replaced Token Detection) objective which was first introduced by ELECTRA for pre-training. The new objective significantly improves the model performance. Please check appendix A11 in our paper [DeBERTa](https://arxiv.org/abs/2006.03654) for more details. This is the DeBERTa V3 small model with 6 layers, 768 hidden size. Total parameters is 143M while Embedding layer take about 98M due to the usage of 128k vocabulary. It's trained with 160GB data. #### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and MNLI tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m | |-------------------|-----------|-----------|--------| | RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 | | XLNet-base | -/- | -/80.2 | 86.8 | |DeBERTa-base |93.1/87.2| 86.2/83.1| 88.8| | **DeBERTa-v3-small** | -/- | -/- | 88.1 | | DeBERTa-v3-small+SiFT | -/- | -/- | 88.8 | #### Fine-tuning with HF transformers ```bash #!/bin/bash cd transformers/examples/pytorch/text-classification/ pip install datasets export TASK_NAME=mnli output_dir="ds_results" num_gpus=8 batch_size=8 python -m torch.distributed.launch --nproc_per_node=${num_gpus} \ run_glue.py \ --model_name_or_path microsoft/deberta-v3-small \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --evaluation_strategy steps \ --max_seq_length 256 \ --warmup_steps 1500 \ --per_device_train_batch_size ${batch_size} \ --learning_rate 3e-5 \ --num_train_epochs 4 \ --output_dir $output_dir \ --overwrite_output_dir \ --logging_steps 1000 \ --logging_dir $output_dir ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```