qianhuiwu commited on
Commit
0031208
·
1 Parent(s): 0bb84fa

Add model card.

Browse files
Files changed (1) hide show
  1. README.md +49 -0
README.md CHANGED
@@ -1,3 +1,52 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  ---
4
+
5
+ # LLMLingua-2-Bert-base-Multilingual-Cased-MeetingBank
6
+
7
+ This model was introduced in the paper [**LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression** (Pan et al, 2024)](). It is a [BERT multilingual base model (cased)](https://huggingface.co/google-bert/bert-base-multilingual-cased) finetuned to perform token classification for task agnostic prompt compression. The probability $p_{preserve}$ of each token $x_i$ is used as the metric for compression. This model is trained on an extractive text compression dataset constructed with the methodology proposed in the [LLMLingua-2], using training examples from [MeetingBank (Hu et al, 2023)](https://meetingbank.github.io/) as the seed data.
8
+
9
+ ## Usage
10
+ ```python
11
+ from llmlingua import PromptCompressor
12
+
13
+ compressor = PromptCompressor(
14
+ model_name="qianhuiwu/llmlingua-2-bert-base-multilingual-cased-meetingbank",
15
+ use_llmlingua2=True
16
+ )
17
+
18
+ original_prompt = """John: So, um, I've been thinking about the project, you know, and I believe we need to, uh, make some changes. I mean, we want the project to succeed, right? So, like, I think we should consider maybe revising the timeline.
19
+ Sarah: I totally agree, John. I mean, we have to be realistic, you know. The timeline is, like, too tight. You know what I mean? We should definitely extend it.
20
+ """
21
+ results = compressor.compress_prompt_llmlingua2(
22
+ original_prompt,
23
+ rate=0.6,
24
+ force_tokens=['\n', '.', '!', '?', ','],
25
+ chunk_end_tokens=['.', '\n'],
26
+ return_word_label=True,
27
+ drop_consecutive=True
28
+ )
29
+
30
+ print(results.keys())
31
+ print(f"Compressed prompt: {results['compressed_prompt']}")
32
+ print(f"Original tokens: {results['origin_tokens']}")
33
+ print(f"Compressed tokens: {results['compressed_tokens']}")
34
+ print(f"Compression rate: {results['rate']}")
35
+
36
+ # get the annotated results over the original prompt
37
+ word_sep = "\t\t|\t\t"
38
+ label_sep = " "
39
+ lines = results["fn_labeled_original_prompt"].split(word_sep)
40
+ annotated_results = []
41
+ for line in lines:
42
+ word, label = line.split(label_sep)
43
+ annotated_results.append((word, '+') if label == '1' else (word, '-')) # list of tuples: (word, label)
44
+ print("Annotated results:")
45
+ for word, label in annotated_results[:10]:
46
+ print(f"{word} {label}")
47
+ ```
48
+
49
+ ## Citation
50
+ ```
51
+ {}
52
+ ```