Add files using upload-large-folder tool
Browse files- adapter_config.json +35 -0
- adapter_model.safetensors +3 -0
- all_results.json +8 -0
- checkpoint-117/README.md +202 -0
- checkpoint-117/adapter_config.json +35 -0
- checkpoint-117/adapter_model.safetensors +3 -0
- checkpoint-117/global_step117/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-117/global_step117/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-117/global_step117/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-117/global_step117/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-117/global_step117/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-117/global_step117/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-117/global_step117/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-117/global_step117/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-117/latest +1 -0
- checkpoint-117/rng_state_0.pth +3 -0
- checkpoint-117/rng_state_1.pth +3 -0
- checkpoint-117/rng_state_2.pth +3 -0
- checkpoint-117/rng_state_3.pth +3 -0
- checkpoint-117/scheduler.pt +3 -0
- checkpoint-117/special_tokens_map.json +24 -0
- checkpoint-117/tokenizer.json +0 -0
- checkpoint-117/tokenizer.model +3 -0
- checkpoint-117/tokenizer_config.json +0 -0
- checkpoint-117/trainer_state.json +852 -0
- checkpoint-117/training_args.bin +3 -0
- checkpoint-117/zero_to_fp32.py +604 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
- train_results.json +8 -0
- trainer_log.jsonl +1 -0
- trainer_state.json +861 -0
- training_args.bin +3 -0
- training_loss.png +0 -0
adapter_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/hpc2hdd/home/kehuitan/huggingface/hub/mistralai/Mixtral-8x22B-Instruct-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.0,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"w1",
|
24 |
+
"q_proj",
|
25 |
+
"w3",
|
26 |
+
"v_proj",
|
27 |
+
"k_proj",
|
28 |
+
"o_proj",
|
29 |
+
"gate",
|
30 |
+
"w2"
|
31 |
+
],
|
32 |
+
"task_type": "CAUSAL_LM",
|
33 |
+
"use_dora": false,
|
34 |
+
"use_rslora": false
|
35 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:792b37034f6456ae49a0b496a79831fadc831005bbf96b7281127286f088b060
|
3 |
+
size 525299200
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.962025316455696,
|
3 |
+
"total_flos": 480077453852672.0,
|
4 |
+
"train_loss": 0.17797149998000544,
|
5 |
+
"train_runtime": 4132.2453,
|
6 |
+
"train_samples_per_second": 0.229,
|
7 |
+
"train_steps_per_second": 0.028
|
8 |
+
}
|
checkpoint-117/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /hpc2hdd/home/kehuitan/huggingface/hub/mistralai/Mixtral-8x22B-Instruct-v0.1
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.12.0
|
checkpoint-117/adapter_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/hpc2hdd/home/kehuitan/huggingface/hub/mistralai/Mixtral-8x22B-Instruct-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.0,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"w1",
|
24 |
+
"q_proj",
|
25 |
+
"w3",
|
26 |
+
"v_proj",
|
27 |
+
"k_proj",
|
28 |
+
"o_proj",
|
29 |
+
"gate",
|
30 |
+
"w2"
|
31 |
+
],
|
32 |
+
"task_type": "CAUSAL_LM",
|
33 |
+
"use_dora": false,
|
34 |
+
"use_rslora": false
|
35 |
+
}
|
checkpoint-117/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:792b37034f6456ae49a0b496a79831fadc831005bbf96b7281127286f088b060
|
3 |
+
size 525299200
|
checkpoint-117/global_step117/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:141d74dd57362a918d2b063ec05439cebab2ac0f8c8b712f1764f04dd9919c42
|
3 |
+
size 787232848
|
checkpoint-117/global_step117/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2b4a31fb47eb7f2330df08745f28aefe27f97867f6a45028651bb6041c0086b
|
3 |
+
size 787232848
|
checkpoint-117/global_step117/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d490e3e59570754032f99f88eb4118001588cd905013853e9f57e5cd39b7199
|
3 |
+
size 787232848
|
checkpoint-117/global_step117/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02dff4f802b16a62eeca2f945399adcb23e11eef435dbf3f5ac46d466594813c
|
3 |
+
size 787232848
|
checkpoint-117/global_step117/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df16cfaffcbdfd45bac486a4bb635ee660c883269b1f30f8b18ba516916ea9e6
|
3 |
+
size 3527910
|
checkpoint-117/global_step117/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b4e9ddd4cb56b84ff935193309ba00adf04438a44e0538c0d3b45a9af1905bc
|
3 |
+
size 3527910
|
checkpoint-117/global_step117/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25238af3586f234f8983a1ac9216a1472938dab54012a112630a0602f2d1c430
|
3 |
+
size 3527910
|
checkpoint-117/global_step117/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa92b94f66b3b0d1710c2c86c3f30f039cae519fec8159b7fe572001057323bc
|
3 |
+
size 3527910
|
checkpoint-117/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step117
|
checkpoint-117/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:308f94f9a5c24e1bad5c393d56ae7af7782600f4e791d9c6ac35b22fff2105b6
|
3 |
+
size 15024
|
checkpoint-117/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b056f3c23cb32dc77a2ec9e7651e0b64e4440e21f0fdf969b86bfc56a1cbdf06
|
3 |
+
size 15024
|
checkpoint-117/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3f8a05714bc528f4885a2816181652f2303b3e8150f89b56aaee6bec56aa520
|
3 |
+
size 15024
|
checkpoint-117/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f755bd3c330281961e5c03af9d10ce8c1e1678619d384f6f1fd5fd7dce2ff50
|
3 |
+
size 15024
|
checkpoint-117/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09557b1d4da433a4489d12bec551f7b75466f796a905598e6ba8698b633264c8
|
3 |
+
size 1064
|
checkpoint-117/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-117/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-117/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
|
3 |
+
size 587404
|
checkpoint-117/tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-117/trainer_state.json
ADDED
@@ -0,0 +1,852 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.962025316455696,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 117,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02531645569620253,
|
13 |
+
"grad_norm": 0.28381249212278864,
|
14 |
+
"learning_rate": 8.333333333333334e-06,
|
15 |
+
"loss": 0.527,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.05063291139240506,
|
20 |
+
"grad_norm": 0.29332876337801134,
|
21 |
+
"learning_rate": 1.6666666666666667e-05,
|
22 |
+
"loss": 0.5152,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0759493670886076,
|
27 |
+
"grad_norm": 0.42097245913011233,
|
28 |
+
"learning_rate": 2.5e-05,
|
29 |
+
"loss": 0.5138,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.10126582278481013,
|
34 |
+
"grad_norm": 0.31373613965244807,
|
35 |
+
"learning_rate": 3.3333333333333335e-05,
|
36 |
+
"loss": 0.4898,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.12658227848101267,
|
41 |
+
"grad_norm": 0.38811861849958174,
|
42 |
+
"learning_rate": 4.166666666666667e-05,
|
43 |
+
"loss": 0.4976,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.1518987341772152,
|
48 |
+
"grad_norm": 0.3665975538958321,
|
49 |
+
"learning_rate": 5e-05,
|
50 |
+
"loss": 0.4886,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.17721518987341772,
|
55 |
+
"grad_norm": 0.28812556883203455,
|
56 |
+
"learning_rate": 5.833333333333334e-05,
|
57 |
+
"loss": 0.4605,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.20253164556962025,
|
62 |
+
"grad_norm": 0.3161799363224881,
|
63 |
+
"learning_rate": 6.666666666666667e-05,
|
64 |
+
"loss": 0.4187,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.22784810126582278,
|
69 |
+
"grad_norm": 0.30351099872377285,
|
70 |
+
"learning_rate": 7.500000000000001e-05,
|
71 |
+
"loss": 0.3898,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.25316455696202533,
|
76 |
+
"grad_norm": 0.20421030715908728,
|
77 |
+
"learning_rate": 8.333333333333334e-05,
|
78 |
+
"loss": 0.2981,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.27848101265822783,
|
83 |
+
"grad_norm": 0.2622244347847273,
|
84 |
+
"learning_rate": 9.166666666666667e-05,
|
85 |
+
"loss": 0.2359,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.3037974683544304,
|
90 |
+
"grad_norm": 0.20123682547622748,
|
91 |
+
"learning_rate": 0.0001,
|
92 |
+
"loss": 0.3136,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.3291139240506329,
|
97 |
+
"grad_norm": 0.19424698101984617,
|
98 |
+
"learning_rate": 9.997762161417517e-05,
|
99 |
+
"loss": 0.2814,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.35443037974683544,
|
104 |
+
"grad_norm": 0.2138956216522083,
|
105 |
+
"learning_rate": 9.991050648838675e-05,
|
106 |
+
"loss": 0.2265,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.379746835443038,
|
111 |
+
"grad_norm": 0.23993237439220805,
|
112 |
+
"learning_rate": 9.979871469976196e-05,
|
113 |
+
"loss": 0.2007,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.4050632911392405,
|
118 |
+
"grad_norm": 0.20626020803621276,
|
119 |
+
"learning_rate": 9.964234631709187e-05,
|
120 |
+
"loss": 0.2496,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.43037974683544306,
|
125 |
+
"grad_norm": 0.16885750202973263,
|
126 |
+
"learning_rate": 9.944154131125642e-05,
|
127 |
+
"loss": 0.216,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.45569620253164556,
|
132 |
+
"grad_norm": 0.20604877553838427,
|
133 |
+
"learning_rate": 9.919647942993148e-05,
|
134 |
+
"loss": 0.2173,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.4810126582278481,
|
139 |
+
"grad_norm": 0.17817294328866598,
|
140 |
+
"learning_rate": 9.890738003669029e-05,
|
141 |
+
"loss": 0.2012,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.5063291139240507,
|
146 |
+
"grad_norm": 0.169371216914731,
|
147 |
+
"learning_rate": 9.857450191464337e-05,
|
148 |
+
"loss": 0.2249,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.5316455696202531,
|
153 |
+
"grad_norm": 0.16863849651520665,
|
154 |
+
"learning_rate": 9.819814303479267e-05,
|
155 |
+
"loss": 0.1928,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.5569620253164557,
|
160 |
+
"grad_norm": 0.15933923390114604,
|
161 |
+
"learning_rate": 9.777864028930705e-05,
|
162 |
+
"loss": 0.2231,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.5822784810126582,
|
167 |
+
"grad_norm": 0.1578071135366508,
|
168 |
+
"learning_rate": 9.731636918995821e-05,
|
169 |
+
"loss": 0.2078,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.6075949367088608,
|
174 |
+
"grad_norm": 0.14721022380875914,
|
175 |
+
"learning_rate": 9.681174353198687e-05,
|
176 |
+
"loss": 0.2151,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.6329113924050633,
|
181 |
+
"grad_norm": 0.16015977971909204,
|
182 |
+
"learning_rate": 9.626521502369984e-05,
|
183 |
+
"loss": 0.2108,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.6582278481012658,
|
188 |
+
"grad_norm": 0.22236247508590176,
|
189 |
+
"learning_rate": 9.567727288213005e-05,
|
190 |
+
"loss": 0.2015,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.6835443037974683,
|
195 |
+
"grad_norm": 0.12808123195714893,
|
196 |
+
"learning_rate": 9.504844339512095e-05,
|
197 |
+
"loss": 0.1715,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.7088607594936709,
|
202 |
+
"grad_norm": 0.14385399140847496,
|
203 |
+
"learning_rate": 9.437928945022771e-05,
|
204 |
+
"loss": 0.2256,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.7341772151898734,
|
209 |
+
"grad_norm": 0.1362215128043263,
|
210 |
+
"learning_rate": 9.367041003085649e-05,
|
211 |
+
"loss": 0.1813,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.759493670886076,
|
216 |
+
"grad_norm": 0.14186669882045214,
|
217 |
+
"learning_rate": 9.292243968009331e-05,
|
218 |
+
"loss": 0.2053,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.7848101265822784,
|
223 |
+
"grad_norm": 0.13378456553677073,
|
224 |
+
"learning_rate": 9.213604793270196e-05,
|
225 |
+
"loss": 0.2085,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.810126582278481,
|
230 |
+
"grad_norm": 0.14358937888813622,
|
231 |
+
"learning_rate": 9.131193871579975e-05,
|
232 |
+
"loss": 0.2008,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.8354430379746836,
|
237 |
+
"grad_norm": 0.147823569949849,
|
238 |
+
"learning_rate": 9.045084971874738e-05,
|
239 |
+
"loss": 0.2539,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.8607594936708861,
|
244 |
+
"grad_norm": 0.13623356559268837,
|
245 |
+
"learning_rate": 8.955355173281708e-05,
|
246 |
+
"loss": 0.1863,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.8860759493670886,
|
251 |
+
"grad_norm": 0.13948008252693808,
|
252 |
+
"learning_rate": 8.862084796122998e-05,
|
253 |
+
"loss": 0.1463,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.9113924050632911,
|
258 |
+
"grad_norm": 0.1339429888742059,
|
259 |
+
"learning_rate": 8.765357330018056e-05,
|
260 |
+
"loss": 0.1592,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.9367088607594937,
|
265 |
+
"grad_norm": 0.1602446905039844,
|
266 |
+
"learning_rate": 8.665259359149132e-05,
|
267 |
+
"loss": 0.2199,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.9620253164556962,
|
272 |
+
"grad_norm": 0.13728548840884053,
|
273 |
+
"learning_rate": 8.561880484756725e-05,
|
274 |
+
"loss": 0.178,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.9873417721518988,
|
279 |
+
"grad_norm": 0.13701462745977658,
|
280 |
+
"learning_rate": 8.455313244934324e-05,
|
281 |
+
"loss": 0.1739,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 1.0126582278481013,
|
286 |
+
"grad_norm": 0.2072023638259741,
|
287 |
+
"learning_rate": 8.345653031794292e-05,
|
288 |
+
"loss": 0.2222,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 1.0379746835443038,
|
293 |
+
"grad_norm": 0.15105393513368087,
|
294 |
+
"learning_rate": 8.232998006078997e-05,
|
295 |
+
"loss": 0.1479,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 1.0632911392405062,
|
300 |
+
"grad_norm": 0.15569390641449965,
|
301 |
+
"learning_rate": 8.117449009293668e-05,
|
302 |
+
"loss": 0.2338,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 1.0886075949367089,
|
307 |
+
"grad_norm": 0.16038992744587696,
|
308 |
+
"learning_rate": 7.999109473439569e-05,
|
309 |
+
"loss": 0.2465,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 1.1139240506329113,
|
314 |
+
"grad_norm": 0.14681811778410783,
|
315 |
+
"learning_rate": 7.878085328428369e-05,
|
316 |
+
"loss": 0.1957,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 1.139240506329114,
|
321 |
+
"grad_norm": 0.16734148603665647,
|
322 |
+
"learning_rate": 7.754484907260513e-05,
|
323 |
+
"loss": 0.2047,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 1.1645569620253164,
|
328 |
+
"grad_norm": 0.14760531374441424,
|
329 |
+
"learning_rate": 7.628418849052523e-05,
|
330 |
+
"loss": 0.149,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.189873417721519,
|
335 |
+
"grad_norm": 0.3076003175984034,
|
336 |
+
"learning_rate": 7.500000000000001e-05,
|
337 |
+
"loss": 0.1874,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.2151898734177216,
|
342 |
+
"grad_norm": 0.1342886833257913,
|
343 |
+
"learning_rate": 7.369343312364993e-05,
|
344 |
+
"loss": 0.1225,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.240506329113924,
|
349 |
+
"grad_norm": 0.1565758288110148,
|
350 |
+
"learning_rate": 7.236565741578163e-05,
|
351 |
+
"loss": 0.1709,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 1.2658227848101267,
|
356 |
+
"grad_norm": 0.12936285098939904,
|
357 |
+
"learning_rate": 7.101786141547828e-05,
|
358 |
+
"loss": 0.0952,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 1.2911392405063291,
|
363 |
+
"grad_norm": 0.1651361450780901,
|
364 |
+
"learning_rate": 6.965125158269619e-05,
|
365 |
+
"loss": 0.1798,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 1.3164556962025316,
|
370 |
+
"grad_norm": 0.18294240175450024,
|
371 |
+
"learning_rate": 6.826705121831976e-05,
|
372 |
+
"loss": 0.2146,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 1.3417721518987342,
|
377 |
+
"grad_norm": 0.15907649925734338,
|
378 |
+
"learning_rate": 6.686649936914152e-05,
|
379 |
+
"loss": 0.1651,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 1.3670886075949367,
|
384 |
+
"grad_norm": 0.15265125027320092,
|
385 |
+
"learning_rate": 6.545084971874738e-05,
|
386 |
+
"loss": 0.1318,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.3924050632911391,
|
391 |
+
"grad_norm": 0.15507370320317093,
|
392 |
+
"learning_rate": 6.402136946530014e-05,
|
393 |
+
"loss": 0.1396,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 1.4177215189873418,
|
398 |
+
"grad_norm": 0.17930905252960624,
|
399 |
+
"learning_rate": 6.257933818722543e-05,
|
400 |
+
"loss": 0.1627,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 1.4430379746835442,
|
405 |
+
"grad_norm": 0.1950350507388175,
|
406 |
+
"learning_rate": 6.112604669781572e-05,
|
407 |
+
"loss": 0.1178,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 1.4683544303797469,
|
412 |
+
"grad_norm": 0.16629437997930713,
|
413 |
+
"learning_rate": 5.9662795889777666e-05,
|
414 |
+
"loss": 0.1708,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 1.4936708860759493,
|
419 |
+
"grad_norm": 0.20546299378777336,
|
420 |
+
"learning_rate": 5.819089557075689e-05,
|
421 |
+
"loss": 0.1567,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.518987341772152,
|
426 |
+
"grad_norm": 0.15069790201742334,
|
427 |
+
"learning_rate": 5.6711663290882776e-05,
|
428 |
+
"loss": 0.1153,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.5443037974683544,
|
433 |
+
"grad_norm": 0.1819232976665009,
|
434 |
+
"learning_rate": 5.522642316338268e-05,
|
435 |
+
"loss": 0.2024,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 1.5696202531645569,
|
440 |
+
"grad_norm": 0.15124842383808745,
|
441 |
+
"learning_rate": 5.373650467932122e-05,
|
442 |
+
"loss": 0.1006,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.5949367088607596,
|
447 |
+
"grad_norm": 0.17606437452474172,
|
448 |
+
"learning_rate": 5.2243241517525754e-05,
|
449 |
+
"loss": 0.1583,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.620253164556962,
|
454 |
+
"grad_norm": 0.203467245813199,
|
455 |
+
"learning_rate": 5.074797035076319e-05,
|
456 |
+
"loss": 0.1928,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 1.6455696202531644,
|
461 |
+
"grad_norm": 0.17192119281095727,
|
462 |
+
"learning_rate": 4.925202964923683e-05,
|
463 |
+
"loss": 0.1186,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.6708860759493671,
|
468 |
+
"grad_norm": 0.16287577101677936,
|
469 |
+
"learning_rate": 4.775675848247427e-05,
|
470 |
+
"loss": 0.1179,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.6962025316455698,
|
475 |
+
"grad_norm": 0.16446919781752384,
|
476 |
+
"learning_rate": 4.626349532067879e-05,
|
477 |
+
"loss": 0.1128,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.721518987341772,
|
482 |
+
"grad_norm": 0.21462405849921243,
|
483 |
+
"learning_rate": 4.477357683661734e-05,
|
484 |
+
"loss": 0.1284,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 1.7468354430379747,
|
489 |
+
"grad_norm": 0.13999924246549017,
|
490 |
+
"learning_rate": 4.328833670911724e-05,
|
491 |
+
"loss": 0.1145,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 1.7721518987341773,
|
496 |
+
"grad_norm": 0.18064769980074544,
|
497 |
+
"learning_rate": 4.180910442924312e-05,
|
498 |
+
"loss": 0.1655,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 1.7974683544303798,
|
503 |
+
"grad_norm": 0.16541787975736866,
|
504 |
+
"learning_rate": 4.0337204110222346e-05,
|
505 |
+
"loss": 0.1204,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.8227848101265822,
|
510 |
+
"grad_norm": 0.17309004286105295,
|
511 |
+
"learning_rate": 3.887395330218429e-05,
|
512 |
+
"loss": 0.1118,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.8481012658227849,
|
517 |
+
"grad_norm": 0.17513841600341226,
|
518 |
+
"learning_rate": 3.742066181277458e-05,
|
519 |
+
"loss": 0.1424,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.8734177215189873,
|
524 |
+
"grad_norm": 0.19362821096770938,
|
525 |
+
"learning_rate": 3.597863053469987e-05,
|
526 |
+
"loss": 0.1682,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.8987341772151898,
|
531 |
+
"grad_norm": 0.20119249367834352,
|
532 |
+
"learning_rate": 3.4549150281252636e-05,
|
533 |
+
"loss": 0.1173,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.9240506329113924,
|
538 |
+
"grad_norm": 0.2085780534303345,
|
539 |
+
"learning_rate": 3.313350063085851e-05,
|
540 |
+
"loss": 0.1657,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.9493670886075949,
|
545 |
+
"grad_norm": 0.18223304941420868,
|
546 |
+
"learning_rate": 3.173294878168025e-05,
|
547 |
+
"loss": 0.1797,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.9746835443037973,
|
552 |
+
"grad_norm": 0.1891158533084314,
|
553 |
+
"learning_rate": 3.0348748417303823e-05,
|
554 |
+
"loss": 0.1319,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 2.0,
|
559 |
+
"grad_norm": 0.27462058932982153,
|
560 |
+
"learning_rate": 2.8982138584521735e-05,
|
561 |
+
"loss": 0.1609,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 2.0253164556962027,
|
566 |
+
"grad_norm": 0.18602374184501738,
|
567 |
+
"learning_rate": 2.7634342584218365e-05,
|
568 |
+
"loss": 0.099,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 2.050632911392405,
|
573 |
+
"grad_norm": 0.17573647458638603,
|
574 |
+
"learning_rate": 2.630656687635007e-05,
|
575 |
+
"loss": 0.1269,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 2.0759493670886076,
|
580 |
+
"grad_norm": 0.170011474839188,
|
581 |
+
"learning_rate": 2.500000000000001e-05,
|
582 |
+
"loss": 0.1492,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 2.1012658227848102,
|
587 |
+
"grad_norm": 0.16455052655933264,
|
588 |
+
"learning_rate": 2.371581150947476e-05,
|
589 |
+
"loss": 0.086,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 2.1265822784810124,
|
594 |
+
"grad_norm": 0.16183814372981142,
|
595 |
+
"learning_rate": 2.245515092739488e-05,
|
596 |
+
"loss": 0.0894,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 2.151898734177215,
|
601 |
+
"grad_norm": 0.1845809186683481,
|
602 |
+
"learning_rate": 2.1219146715716332e-05,
|
603 |
+
"loss": 0.1312,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 2.1772151898734178,
|
608 |
+
"grad_norm": 0.17513589542519134,
|
609 |
+
"learning_rate": 2.0008905265604316e-05,
|
610 |
+
"loss": 0.0934,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 2.2025316455696204,
|
615 |
+
"grad_norm": 0.2109199799220023,
|
616 |
+
"learning_rate": 1.8825509907063327e-05,
|
617 |
+
"loss": 0.093,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 2.2278481012658227,
|
622 |
+
"grad_norm": 0.17669643474539057,
|
623 |
+
"learning_rate": 1.7670019939210024e-05,
|
624 |
+
"loss": 0.087,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 2.2531645569620253,
|
629 |
+
"grad_norm": 0.21167114503852452,
|
630 |
+
"learning_rate": 1.6543469682057106e-05,
|
631 |
+
"loss": 0.114,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 2.278481012658228,
|
636 |
+
"grad_norm": 0.21139669768919672,
|
637 |
+
"learning_rate": 1.544686755065677e-05,
|
638 |
+
"loss": 0.1003,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 2.3037974683544302,
|
643 |
+
"grad_norm": 0.17912893970040897,
|
644 |
+
"learning_rate": 1.438119515243277e-05,
|
645 |
+
"loss": 0.1023,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 2.329113924050633,
|
650 |
+
"grad_norm": 0.19961182766357477,
|
651 |
+
"learning_rate": 1.3347406408508695e-05,
|
652 |
+
"loss": 0.0989,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 2.3544303797468356,
|
657 |
+
"grad_norm": 0.18672908810203143,
|
658 |
+
"learning_rate": 1.2346426699819458e-05,
|
659 |
+
"loss": 0.0865,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 2.379746835443038,
|
664 |
+
"grad_norm": 0.1970580774900479,
|
665 |
+
"learning_rate": 1.137915203877003e-05,
|
666 |
+
"loss": 0.0954,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 2.4050632911392404,
|
671 |
+
"grad_norm": 0.15997868673482188,
|
672 |
+
"learning_rate": 1.0446448267182952e-05,
|
673 |
+
"loss": 0.0751,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 2.430379746835443,
|
678 |
+
"grad_norm": 0.22896720413179728,
|
679 |
+
"learning_rate": 9.549150281252633e-06,
|
680 |
+
"loss": 0.0888,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 2.4556962025316453,
|
685 |
+
"grad_norm": 0.1837419155509244,
|
686 |
+
"learning_rate": 8.688061284200266e-06,
|
687 |
+
"loss": 0.091,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 2.481012658227848,
|
692 |
+
"grad_norm": 0.21793351897040644,
|
693 |
+
"learning_rate": 7.863952067298042e-06,
|
694 |
+
"loss": 0.0892,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 2.5063291139240507,
|
699 |
+
"grad_norm": 0.19632949222949325,
|
700 |
+
"learning_rate": 7.077560319906695e-06,
|
701 |
+
"loss": 0.088,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 2.5316455696202533,
|
706 |
+
"grad_norm": 0.21767182823620418,
|
707 |
+
"learning_rate": 6.329589969143518e-06,
|
708 |
+
"loss": 0.1415,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 2.5569620253164556,
|
713 |
+
"grad_norm": 0.2195952213656607,
|
714 |
+
"learning_rate": 5.620710549772295e-06,
|
715 |
+
"loss": 0.1036,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 2.5822784810126582,
|
720 |
+
"grad_norm": 0.19933172837107496,
|
721 |
+
"learning_rate": 4.951556604879048e-06,
|
722 |
+
"loss": 0.074,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 2.607594936708861,
|
727 |
+
"grad_norm": 0.20549095019371302,
|
728 |
+
"learning_rate": 4.322727117869951e-06,
|
729 |
+
"loss": 0.087,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 2.632911392405063,
|
734 |
+
"grad_norm": 0.19724008187075792,
|
735 |
+
"learning_rate": 3.734784976300165e-06,
|
736 |
+
"loss": 0.1255,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 2.6582278481012658,
|
741 |
+
"grad_norm": 0.22735257344640358,
|
742 |
+
"learning_rate": 3.18825646801314e-06,
|
743 |
+
"loss": 0.1352,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 2.6835443037974684,
|
748 |
+
"grad_norm": 0.20013828861070956,
|
749 |
+
"learning_rate": 2.6836308100417873e-06,
|
750 |
+
"loss": 0.0766,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 2.708860759493671,
|
755 |
+
"grad_norm": 0.20899162992915188,
|
756 |
+
"learning_rate": 2.221359710692961e-06,
|
757 |
+
"loss": 0.1113,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 2.7341772151898733,
|
762 |
+
"grad_norm": 0.22623291377890534,
|
763 |
+
"learning_rate": 1.8018569652073381e-06,
|
764 |
+
"loss": 0.1064,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 2.759493670886076,
|
769 |
+
"grad_norm": 0.24976299644855401,
|
770 |
+
"learning_rate": 1.4254980853566247e-06,
|
771 |
+
"loss": 0.109,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 2.7848101265822782,
|
776 |
+
"grad_norm": 0.20046850962635593,
|
777 |
+
"learning_rate": 1.0926199633097157e-06,
|
778 |
+
"loss": 0.1121,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 2.810126582278481,
|
783 |
+
"grad_norm": 0.21161953723512844,
|
784 |
+
"learning_rate": 8.035205700685167e-07,
|
785 |
+
"loss": 0.0884,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 2.8354430379746836,
|
790 |
+
"grad_norm": 0.23714913658575656,
|
791 |
+
"learning_rate": 5.584586887435739e-07,
|
792 |
+
"loss": 0.0868,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 2.8607594936708862,
|
797 |
+
"grad_norm": 0.20860035989411196,
|
798 |
+
"learning_rate": 3.576536829081323e-07,
|
799 |
+
"loss": 0.0945,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 2.8860759493670884,
|
804 |
+
"grad_norm": 0.264811602754133,
|
805 |
+
"learning_rate": 2.012853002380466e-07,
|
806 |
+
"loss": 0.1285,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 2.911392405063291,
|
811 |
+
"grad_norm": 0.21080729209863774,
|
812 |
+
"learning_rate": 8.949351161324227e-08,
|
813 |
+
"loss": 0.0733,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 2.9367088607594938,
|
818 |
+
"grad_norm": 0.21648721660730044,
|
819 |
+
"learning_rate": 2.237838582483387e-08,
|
820 |
+
"loss": 0.106,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 2.962025316455696,
|
825 |
+
"grad_norm": 0.20297309807693178,
|
826 |
+
"learning_rate": 0.0,
|
827 |
+
"loss": 0.11,
|
828 |
+
"step": 117
|
829 |
+
}
|
830 |
+
],
|
831 |
+
"logging_steps": 1,
|
832 |
+
"max_steps": 117,
|
833 |
+
"num_input_tokens_seen": 0,
|
834 |
+
"num_train_epochs": 3,
|
835 |
+
"save_steps": 500,
|
836 |
+
"stateful_callbacks": {
|
837 |
+
"TrainerControl": {
|
838 |
+
"args": {
|
839 |
+
"should_epoch_stop": false,
|
840 |
+
"should_evaluate": false,
|
841 |
+
"should_log": false,
|
842 |
+
"should_save": true,
|
843 |
+
"should_training_stop": true
|
844 |
+
},
|
845 |
+
"attributes": {}
|
846 |
+
}
|
847 |
+
},
|
848 |
+
"total_flos": 480077453852672.0,
|
849 |
+
"train_batch_size": 1,
|
850 |
+
"trial_name": null,
|
851 |
+
"trial_params": null
|
852 |
+
}
|
checkpoint-117/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b824d808fe94c8353ba36a394d2101d1d0658f601927160facdb8532fd03fbad
|
3 |
+
size 7352
|
checkpoint-117/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
|
3 |
+
size 587404
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 2.962025316455696,
|
3 |
+
"total_flos": 480077453852672.0,
|
4 |
+
"train_loss": 0.17797149998000544,
|
5 |
+
"train_runtime": 4132.2453,
|
6 |
+
"train_samples_per_second": 0.229,
|
7 |
+
"train_steps_per_second": 0.028
|
8 |
+
}
|
trainer_log.jsonl
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"current_steps": 117, "total_steps": 117, "epoch": 2.962025316455696, "percentage": 100.0, "elapsed_time": "1:08:50", "remaining_time": "0:00:00"}
|
trainer_state.json
ADDED
@@ -0,0 +1,861 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.962025316455696,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 117,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02531645569620253,
|
13 |
+
"grad_norm": 0.28381249212278864,
|
14 |
+
"learning_rate": 8.333333333333334e-06,
|
15 |
+
"loss": 0.527,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.05063291139240506,
|
20 |
+
"grad_norm": 0.29332876337801134,
|
21 |
+
"learning_rate": 1.6666666666666667e-05,
|
22 |
+
"loss": 0.5152,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0759493670886076,
|
27 |
+
"grad_norm": 0.42097245913011233,
|
28 |
+
"learning_rate": 2.5e-05,
|
29 |
+
"loss": 0.5138,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.10126582278481013,
|
34 |
+
"grad_norm": 0.31373613965244807,
|
35 |
+
"learning_rate": 3.3333333333333335e-05,
|
36 |
+
"loss": 0.4898,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.12658227848101267,
|
41 |
+
"grad_norm": 0.38811861849958174,
|
42 |
+
"learning_rate": 4.166666666666667e-05,
|
43 |
+
"loss": 0.4976,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.1518987341772152,
|
48 |
+
"grad_norm": 0.3665975538958321,
|
49 |
+
"learning_rate": 5e-05,
|
50 |
+
"loss": 0.4886,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.17721518987341772,
|
55 |
+
"grad_norm": 0.28812556883203455,
|
56 |
+
"learning_rate": 5.833333333333334e-05,
|
57 |
+
"loss": 0.4605,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.20253164556962025,
|
62 |
+
"grad_norm": 0.3161799363224881,
|
63 |
+
"learning_rate": 6.666666666666667e-05,
|
64 |
+
"loss": 0.4187,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.22784810126582278,
|
69 |
+
"grad_norm": 0.30351099872377285,
|
70 |
+
"learning_rate": 7.500000000000001e-05,
|
71 |
+
"loss": 0.3898,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.25316455696202533,
|
76 |
+
"grad_norm": 0.20421030715908728,
|
77 |
+
"learning_rate": 8.333333333333334e-05,
|
78 |
+
"loss": 0.2981,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.27848101265822783,
|
83 |
+
"grad_norm": 0.2622244347847273,
|
84 |
+
"learning_rate": 9.166666666666667e-05,
|
85 |
+
"loss": 0.2359,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.3037974683544304,
|
90 |
+
"grad_norm": 0.20123682547622748,
|
91 |
+
"learning_rate": 0.0001,
|
92 |
+
"loss": 0.3136,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.3291139240506329,
|
97 |
+
"grad_norm": 0.19424698101984617,
|
98 |
+
"learning_rate": 9.997762161417517e-05,
|
99 |
+
"loss": 0.2814,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.35443037974683544,
|
104 |
+
"grad_norm": 0.2138956216522083,
|
105 |
+
"learning_rate": 9.991050648838675e-05,
|
106 |
+
"loss": 0.2265,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.379746835443038,
|
111 |
+
"grad_norm": 0.23993237439220805,
|
112 |
+
"learning_rate": 9.979871469976196e-05,
|
113 |
+
"loss": 0.2007,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.4050632911392405,
|
118 |
+
"grad_norm": 0.20626020803621276,
|
119 |
+
"learning_rate": 9.964234631709187e-05,
|
120 |
+
"loss": 0.2496,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.43037974683544306,
|
125 |
+
"grad_norm": 0.16885750202973263,
|
126 |
+
"learning_rate": 9.944154131125642e-05,
|
127 |
+
"loss": 0.216,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.45569620253164556,
|
132 |
+
"grad_norm": 0.20604877553838427,
|
133 |
+
"learning_rate": 9.919647942993148e-05,
|
134 |
+
"loss": 0.2173,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.4810126582278481,
|
139 |
+
"grad_norm": 0.17817294328866598,
|
140 |
+
"learning_rate": 9.890738003669029e-05,
|
141 |
+
"loss": 0.2012,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.5063291139240507,
|
146 |
+
"grad_norm": 0.169371216914731,
|
147 |
+
"learning_rate": 9.857450191464337e-05,
|
148 |
+
"loss": 0.2249,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.5316455696202531,
|
153 |
+
"grad_norm": 0.16863849651520665,
|
154 |
+
"learning_rate": 9.819814303479267e-05,
|
155 |
+
"loss": 0.1928,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.5569620253164557,
|
160 |
+
"grad_norm": 0.15933923390114604,
|
161 |
+
"learning_rate": 9.777864028930705e-05,
|
162 |
+
"loss": 0.2231,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.5822784810126582,
|
167 |
+
"grad_norm": 0.1578071135366508,
|
168 |
+
"learning_rate": 9.731636918995821e-05,
|
169 |
+
"loss": 0.2078,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.6075949367088608,
|
174 |
+
"grad_norm": 0.14721022380875914,
|
175 |
+
"learning_rate": 9.681174353198687e-05,
|
176 |
+
"loss": 0.2151,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.6329113924050633,
|
181 |
+
"grad_norm": 0.16015977971909204,
|
182 |
+
"learning_rate": 9.626521502369984e-05,
|
183 |
+
"loss": 0.2108,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.6582278481012658,
|
188 |
+
"grad_norm": 0.22236247508590176,
|
189 |
+
"learning_rate": 9.567727288213005e-05,
|
190 |
+
"loss": 0.2015,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.6835443037974683,
|
195 |
+
"grad_norm": 0.12808123195714893,
|
196 |
+
"learning_rate": 9.504844339512095e-05,
|
197 |
+
"loss": 0.1715,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.7088607594936709,
|
202 |
+
"grad_norm": 0.14385399140847496,
|
203 |
+
"learning_rate": 9.437928945022771e-05,
|
204 |
+
"loss": 0.2256,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.7341772151898734,
|
209 |
+
"grad_norm": 0.1362215128043263,
|
210 |
+
"learning_rate": 9.367041003085649e-05,
|
211 |
+
"loss": 0.1813,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.759493670886076,
|
216 |
+
"grad_norm": 0.14186669882045214,
|
217 |
+
"learning_rate": 9.292243968009331e-05,
|
218 |
+
"loss": 0.2053,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.7848101265822784,
|
223 |
+
"grad_norm": 0.13378456553677073,
|
224 |
+
"learning_rate": 9.213604793270196e-05,
|
225 |
+
"loss": 0.2085,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.810126582278481,
|
230 |
+
"grad_norm": 0.14358937888813622,
|
231 |
+
"learning_rate": 9.131193871579975e-05,
|
232 |
+
"loss": 0.2008,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.8354430379746836,
|
237 |
+
"grad_norm": 0.147823569949849,
|
238 |
+
"learning_rate": 9.045084971874738e-05,
|
239 |
+
"loss": 0.2539,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.8607594936708861,
|
244 |
+
"grad_norm": 0.13623356559268837,
|
245 |
+
"learning_rate": 8.955355173281708e-05,
|
246 |
+
"loss": 0.1863,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.8860759493670886,
|
251 |
+
"grad_norm": 0.13948008252693808,
|
252 |
+
"learning_rate": 8.862084796122998e-05,
|
253 |
+
"loss": 0.1463,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.9113924050632911,
|
258 |
+
"grad_norm": 0.1339429888742059,
|
259 |
+
"learning_rate": 8.765357330018056e-05,
|
260 |
+
"loss": 0.1592,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.9367088607594937,
|
265 |
+
"grad_norm": 0.1602446905039844,
|
266 |
+
"learning_rate": 8.665259359149132e-05,
|
267 |
+
"loss": 0.2199,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.9620253164556962,
|
272 |
+
"grad_norm": 0.13728548840884053,
|
273 |
+
"learning_rate": 8.561880484756725e-05,
|
274 |
+
"loss": 0.178,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.9873417721518988,
|
279 |
+
"grad_norm": 0.13701462745977658,
|
280 |
+
"learning_rate": 8.455313244934324e-05,
|
281 |
+
"loss": 0.1739,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 1.0126582278481013,
|
286 |
+
"grad_norm": 0.2072023638259741,
|
287 |
+
"learning_rate": 8.345653031794292e-05,
|
288 |
+
"loss": 0.2222,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 1.0379746835443038,
|
293 |
+
"grad_norm": 0.15105393513368087,
|
294 |
+
"learning_rate": 8.232998006078997e-05,
|
295 |
+
"loss": 0.1479,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 1.0632911392405062,
|
300 |
+
"grad_norm": 0.15569390641449965,
|
301 |
+
"learning_rate": 8.117449009293668e-05,
|
302 |
+
"loss": 0.2338,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 1.0886075949367089,
|
307 |
+
"grad_norm": 0.16038992744587696,
|
308 |
+
"learning_rate": 7.999109473439569e-05,
|
309 |
+
"loss": 0.2465,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 1.1139240506329113,
|
314 |
+
"grad_norm": 0.14681811778410783,
|
315 |
+
"learning_rate": 7.878085328428369e-05,
|
316 |
+
"loss": 0.1957,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 1.139240506329114,
|
321 |
+
"grad_norm": 0.16734148603665647,
|
322 |
+
"learning_rate": 7.754484907260513e-05,
|
323 |
+
"loss": 0.2047,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 1.1645569620253164,
|
328 |
+
"grad_norm": 0.14760531374441424,
|
329 |
+
"learning_rate": 7.628418849052523e-05,
|
330 |
+
"loss": 0.149,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.189873417721519,
|
335 |
+
"grad_norm": 0.3076003175984034,
|
336 |
+
"learning_rate": 7.500000000000001e-05,
|
337 |
+
"loss": 0.1874,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.2151898734177216,
|
342 |
+
"grad_norm": 0.1342886833257913,
|
343 |
+
"learning_rate": 7.369343312364993e-05,
|
344 |
+
"loss": 0.1225,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.240506329113924,
|
349 |
+
"grad_norm": 0.1565758288110148,
|
350 |
+
"learning_rate": 7.236565741578163e-05,
|
351 |
+
"loss": 0.1709,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 1.2658227848101267,
|
356 |
+
"grad_norm": 0.12936285098939904,
|
357 |
+
"learning_rate": 7.101786141547828e-05,
|
358 |
+
"loss": 0.0952,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 1.2911392405063291,
|
363 |
+
"grad_norm": 0.1651361450780901,
|
364 |
+
"learning_rate": 6.965125158269619e-05,
|
365 |
+
"loss": 0.1798,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 1.3164556962025316,
|
370 |
+
"grad_norm": 0.18294240175450024,
|
371 |
+
"learning_rate": 6.826705121831976e-05,
|
372 |
+
"loss": 0.2146,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 1.3417721518987342,
|
377 |
+
"grad_norm": 0.15907649925734338,
|
378 |
+
"learning_rate": 6.686649936914152e-05,
|
379 |
+
"loss": 0.1651,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 1.3670886075949367,
|
384 |
+
"grad_norm": 0.15265125027320092,
|
385 |
+
"learning_rate": 6.545084971874738e-05,
|
386 |
+
"loss": 0.1318,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.3924050632911391,
|
391 |
+
"grad_norm": 0.15507370320317093,
|
392 |
+
"learning_rate": 6.402136946530014e-05,
|
393 |
+
"loss": 0.1396,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 1.4177215189873418,
|
398 |
+
"grad_norm": 0.17930905252960624,
|
399 |
+
"learning_rate": 6.257933818722543e-05,
|
400 |
+
"loss": 0.1627,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 1.4430379746835442,
|
405 |
+
"grad_norm": 0.1950350507388175,
|
406 |
+
"learning_rate": 6.112604669781572e-05,
|
407 |
+
"loss": 0.1178,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 1.4683544303797469,
|
412 |
+
"grad_norm": 0.16629437997930713,
|
413 |
+
"learning_rate": 5.9662795889777666e-05,
|
414 |
+
"loss": 0.1708,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 1.4936708860759493,
|
419 |
+
"grad_norm": 0.20546299378777336,
|
420 |
+
"learning_rate": 5.819089557075689e-05,
|
421 |
+
"loss": 0.1567,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.518987341772152,
|
426 |
+
"grad_norm": 0.15069790201742334,
|
427 |
+
"learning_rate": 5.6711663290882776e-05,
|
428 |
+
"loss": 0.1153,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.5443037974683544,
|
433 |
+
"grad_norm": 0.1819232976665009,
|
434 |
+
"learning_rate": 5.522642316338268e-05,
|
435 |
+
"loss": 0.2024,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 1.5696202531645569,
|
440 |
+
"grad_norm": 0.15124842383808745,
|
441 |
+
"learning_rate": 5.373650467932122e-05,
|
442 |
+
"loss": 0.1006,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.5949367088607596,
|
447 |
+
"grad_norm": 0.17606437452474172,
|
448 |
+
"learning_rate": 5.2243241517525754e-05,
|
449 |
+
"loss": 0.1583,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.620253164556962,
|
454 |
+
"grad_norm": 0.203467245813199,
|
455 |
+
"learning_rate": 5.074797035076319e-05,
|
456 |
+
"loss": 0.1928,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 1.6455696202531644,
|
461 |
+
"grad_norm": 0.17192119281095727,
|
462 |
+
"learning_rate": 4.925202964923683e-05,
|
463 |
+
"loss": 0.1186,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.6708860759493671,
|
468 |
+
"grad_norm": 0.16287577101677936,
|
469 |
+
"learning_rate": 4.775675848247427e-05,
|
470 |
+
"loss": 0.1179,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.6962025316455698,
|
475 |
+
"grad_norm": 0.16446919781752384,
|
476 |
+
"learning_rate": 4.626349532067879e-05,
|
477 |
+
"loss": 0.1128,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.721518987341772,
|
482 |
+
"grad_norm": 0.21462405849921243,
|
483 |
+
"learning_rate": 4.477357683661734e-05,
|
484 |
+
"loss": 0.1284,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 1.7468354430379747,
|
489 |
+
"grad_norm": 0.13999924246549017,
|
490 |
+
"learning_rate": 4.328833670911724e-05,
|
491 |
+
"loss": 0.1145,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 1.7721518987341773,
|
496 |
+
"grad_norm": 0.18064769980074544,
|
497 |
+
"learning_rate": 4.180910442924312e-05,
|
498 |
+
"loss": 0.1655,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 1.7974683544303798,
|
503 |
+
"grad_norm": 0.16541787975736866,
|
504 |
+
"learning_rate": 4.0337204110222346e-05,
|
505 |
+
"loss": 0.1204,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.8227848101265822,
|
510 |
+
"grad_norm": 0.17309004286105295,
|
511 |
+
"learning_rate": 3.887395330218429e-05,
|
512 |
+
"loss": 0.1118,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.8481012658227849,
|
517 |
+
"grad_norm": 0.17513841600341226,
|
518 |
+
"learning_rate": 3.742066181277458e-05,
|
519 |
+
"loss": 0.1424,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.8734177215189873,
|
524 |
+
"grad_norm": 0.19362821096770938,
|
525 |
+
"learning_rate": 3.597863053469987e-05,
|
526 |
+
"loss": 0.1682,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.8987341772151898,
|
531 |
+
"grad_norm": 0.20119249367834352,
|
532 |
+
"learning_rate": 3.4549150281252636e-05,
|
533 |
+
"loss": 0.1173,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.9240506329113924,
|
538 |
+
"grad_norm": 0.2085780534303345,
|
539 |
+
"learning_rate": 3.313350063085851e-05,
|
540 |
+
"loss": 0.1657,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.9493670886075949,
|
545 |
+
"grad_norm": 0.18223304941420868,
|
546 |
+
"learning_rate": 3.173294878168025e-05,
|
547 |
+
"loss": 0.1797,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.9746835443037973,
|
552 |
+
"grad_norm": 0.1891158533084314,
|
553 |
+
"learning_rate": 3.0348748417303823e-05,
|
554 |
+
"loss": 0.1319,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 2.0,
|
559 |
+
"grad_norm": 0.27462058932982153,
|
560 |
+
"learning_rate": 2.8982138584521735e-05,
|
561 |
+
"loss": 0.1609,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 2.0253164556962027,
|
566 |
+
"grad_norm": 0.18602374184501738,
|
567 |
+
"learning_rate": 2.7634342584218365e-05,
|
568 |
+
"loss": 0.099,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 2.050632911392405,
|
573 |
+
"grad_norm": 0.17573647458638603,
|
574 |
+
"learning_rate": 2.630656687635007e-05,
|
575 |
+
"loss": 0.1269,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 2.0759493670886076,
|
580 |
+
"grad_norm": 0.170011474839188,
|
581 |
+
"learning_rate": 2.500000000000001e-05,
|
582 |
+
"loss": 0.1492,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 2.1012658227848102,
|
587 |
+
"grad_norm": 0.16455052655933264,
|
588 |
+
"learning_rate": 2.371581150947476e-05,
|
589 |
+
"loss": 0.086,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 2.1265822784810124,
|
594 |
+
"grad_norm": 0.16183814372981142,
|
595 |
+
"learning_rate": 2.245515092739488e-05,
|
596 |
+
"loss": 0.0894,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 2.151898734177215,
|
601 |
+
"grad_norm": 0.1845809186683481,
|
602 |
+
"learning_rate": 2.1219146715716332e-05,
|
603 |
+
"loss": 0.1312,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 2.1772151898734178,
|
608 |
+
"grad_norm": 0.17513589542519134,
|
609 |
+
"learning_rate": 2.0008905265604316e-05,
|
610 |
+
"loss": 0.0934,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 2.2025316455696204,
|
615 |
+
"grad_norm": 0.2109199799220023,
|
616 |
+
"learning_rate": 1.8825509907063327e-05,
|
617 |
+
"loss": 0.093,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 2.2278481012658227,
|
622 |
+
"grad_norm": 0.17669643474539057,
|
623 |
+
"learning_rate": 1.7670019939210024e-05,
|
624 |
+
"loss": 0.087,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 2.2531645569620253,
|
629 |
+
"grad_norm": 0.21167114503852452,
|
630 |
+
"learning_rate": 1.6543469682057106e-05,
|
631 |
+
"loss": 0.114,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 2.278481012658228,
|
636 |
+
"grad_norm": 0.21139669768919672,
|
637 |
+
"learning_rate": 1.544686755065677e-05,
|
638 |
+
"loss": 0.1003,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 2.3037974683544302,
|
643 |
+
"grad_norm": 0.17912893970040897,
|
644 |
+
"learning_rate": 1.438119515243277e-05,
|
645 |
+
"loss": 0.1023,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 2.329113924050633,
|
650 |
+
"grad_norm": 0.19961182766357477,
|
651 |
+
"learning_rate": 1.3347406408508695e-05,
|
652 |
+
"loss": 0.0989,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 2.3544303797468356,
|
657 |
+
"grad_norm": 0.18672908810203143,
|
658 |
+
"learning_rate": 1.2346426699819458e-05,
|
659 |
+
"loss": 0.0865,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 2.379746835443038,
|
664 |
+
"grad_norm": 0.1970580774900479,
|
665 |
+
"learning_rate": 1.137915203877003e-05,
|
666 |
+
"loss": 0.0954,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 2.4050632911392404,
|
671 |
+
"grad_norm": 0.15997868673482188,
|
672 |
+
"learning_rate": 1.0446448267182952e-05,
|
673 |
+
"loss": 0.0751,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 2.430379746835443,
|
678 |
+
"grad_norm": 0.22896720413179728,
|
679 |
+
"learning_rate": 9.549150281252633e-06,
|
680 |
+
"loss": 0.0888,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 2.4556962025316453,
|
685 |
+
"grad_norm": 0.1837419155509244,
|
686 |
+
"learning_rate": 8.688061284200266e-06,
|
687 |
+
"loss": 0.091,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 2.481012658227848,
|
692 |
+
"grad_norm": 0.21793351897040644,
|
693 |
+
"learning_rate": 7.863952067298042e-06,
|
694 |
+
"loss": 0.0892,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 2.5063291139240507,
|
699 |
+
"grad_norm": 0.19632949222949325,
|
700 |
+
"learning_rate": 7.077560319906695e-06,
|
701 |
+
"loss": 0.088,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 2.5316455696202533,
|
706 |
+
"grad_norm": 0.21767182823620418,
|
707 |
+
"learning_rate": 6.329589969143518e-06,
|
708 |
+
"loss": 0.1415,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 2.5569620253164556,
|
713 |
+
"grad_norm": 0.2195952213656607,
|
714 |
+
"learning_rate": 5.620710549772295e-06,
|
715 |
+
"loss": 0.1036,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 2.5822784810126582,
|
720 |
+
"grad_norm": 0.19933172837107496,
|
721 |
+
"learning_rate": 4.951556604879048e-06,
|
722 |
+
"loss": 0.074,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 2.607594936708861,
|
727 |
+
"grad_norm": 0.20549095019371302,
|
728 |
+
"learning_rate": 4.322727117869951e-06,
|
729 |
+
"loss": 0.087,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 2.632911392405063,
|
734 |
+
"grad_norm": 0.19724008187075792,
|
735 |
+
"learning_rate": 3.734784976300165e-06,
|
736 |
+
"loss": 0.1255,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 2.6582278481012658,
|
741 |
+
"grad_norm": 0.22735257344640358,
|
742 |
+
"learning_rate": 3.18825646801314e-06,
|
743 |
+
"loss": 0.1352,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 2.6835443037974684,
|
748 |
+
"grad_norm": 0.20013828861070956,
|
749 |
+
"learning_rate": 2.6836308100417873e-06,
|
750 |
+
"loss": 0.0766,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 2.708860759493671,
|
755 |
+
"grad_norm": 0.20899162992915188,
|
756 |
+
"learning_rate": 2.221359710692961e-06,
|
757 |
+
"loss": 0.1113,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 2.7341772151898733,
|
762 |
+
"grad_norm": 0.22623291377890534,
|
763 |
+
"learning_rate": 1.8018569652073381e-06,
|
764 |
+
"loss": 0.1064,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 2.759493670886076,
|
769 |
+
"grad_norm": 0.24976299644855401,
|
770 |
+
"learning_rate": 1.4254980853566247e-06,
|
771 |
+
"loss": 0.109,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 2.7848101265822782,
|
776 |
+
"grad_norm": 0.20046850962635593,
|
777 |
+
"learning_rate": 1.0926199633097157e-06,
|
778 |
+
"loss": 0.1121,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 2.810126582278481,
|
783 |
+
"grad_norm": 0.21161953723512844,
|
784 |
+
"learning_rate": 8.035205700685167e-07,
|
785 |
+
"loss": 0.0884,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 2.8354430379746836,
|
790 |
+
"grad_norm": 0.23714913658575656,
|
791 |
+
"learning_rate": 5.584586887435739e-07,
|
792 |
+
"loss": 0.0868,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 2.8607594936708862,
|
797 |
+
"grad_norm": 0.20860035989411196,
|
798 |
+
"learning_rate": 3.576536829081323e-07,
|
799 |
+
"loss": 0.0945,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 2.8860759493670884,
|
804 |
+
"grad_norm": 0.264811602754133,
|
805 |
+
"learning_rate": 2.012853002380466e-07,
|
806 |
+
"loss": 0.1285,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 2.911392405063291,
|
811 |
+
"grad_norm": 0.21080729209863774,
|
812 |
+
"learning_rate": 8.949351161324227e-08,
|
813 |
+
"loss": 0.0733,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 2.9367088607594938,
|
818 |
+
"grad_norm": 0.21648721660730044,
|
819 |
+
"learning_rate": 2.237838582483387e-08,
|
820 |
+
"loss": 0.106,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 2.962025316455696,
|
825 |
+
"grad_norm": 0.20297309807693178,
|
826 |
+
"learning_rate": 0.0,
|
827 |
+
"loss": 0.11,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 2.962025316455696,
|
832 |
+
"step": 117,
|
833 |
+
"total_flos": 480077453852672.0,
|
834 |
+
"train_loss": 0.17797149998000544,
|
835 |
+
"train_runtime": 4132.2453,
|
836 |
+
"train_samples_per_second": 0.229,
|
837 |
+
"train_steps_per_second": 0.028
|
838 |
+
}
|
839 |
+
],
|
840 |
+
"logging_steps": 1,
|
841 |
+
"max_steps": 117,
|
842 |
+
"num_input_tokens_seen": 0,
|
843 |
+
"num_train_epochs": 3,
|
844 |
+
"save_steps": 500,
|
845 |
+
"stateful_callbacks": {
|
846 |
+
"TrainerControl": {
|
847 |
+
"args": {
|
848 |
+
"should_epoch_stop": false,
|
849 |
+
"should_evaluate": false,
|
850 |
+
"should_log": false,
|
851 |
+
"should_save": true,
|
852 |
+
"should_training_stop": true
|
853 |
+
},
|
854 |
+
"attributes": {}
|
855 |
+
}
|
856 |
+
},
|
857 |
+
"total_flos": 480077453852672.0,
|
858 |
+
"train_batch_size": 1,
|
859 |
+
"trial_name": null,
|
860 |
+
"trial_params": null
|
861 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b824d808fe94c8353ba36a394d2101d1d0658f601927160facdb8532fd03fbad
|
3 |
+
size 7352
|
training_loss.png
ADDED
![]() |