mightyzau commited on
Commit
aac158a
·
1 Parent(s): 12978b2

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InfMLLMLlamaForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_infmllm_chat.InfMLLMChatConfig",
7
+ "AutoModel": "modeling_infmllm_chat.InfMLLMLlamaForCausalLM"
8
+ },
9
+ "bos_token_id": 1,
10
+ "eos_token_id": 2,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "image_size": 448,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 11008,
16
+ "max_position_embeddings": 4096,
17
+ "mm_hidden_size": 1408,
18
+ "mm_projector_type": "pooler",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 32,
22
+ "pad_token_id": 0,
23
+ "pool_out_size": "32+16+8",
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": null,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.31.0",
30
+ "use_cache": true,
31
+ "vision_tower": "eva_clip_g",
32
+ "vocab_size": 32000
33
+ }
configuration_infmllm_chat.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from typing import List
3
+
4
+
5
+ class InfMLLMChatConfig(PretrainedConfig):
6
+ def __init__(
7
+ self,
8
+ image_size=448,
9
+ vision_tower="eva_clip_g",
10
+ mm_projector_type="pooler",
11
+ pool_out_size="32+16+8",
12
+ mm_hidden_size=1408,
13
+ hidden_size=4096,
14
+ **kwargs
15
+ ):
16
+ self.image_size = image_size
17
+ self.vision_tower = vision_tower
18
+ self.mm_projector_type = mm_projector_type
19
+ self.pool_out_size = pool_out_size
20
+ self.mm_hidden_size = mm_hidden_size
21
+ self.hidden_size = hidden_size
22
+
23
+
24
+ super().__init__(**kwargs)
25
+
eva_vit.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Based on EVA, BEIT, timm and DeiT code bases
2
+ # https://github.com/baaivision/EVA
3
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm
4
+ # https://github.com/microsoft/unilm/tree/master/beit
5
+ # https://github.com/facebookresearch/deit/
6
+ # https://github.com/facebookresearch/dino
7
+ # --------------------------------------------------------'
8
+ import math
9
+ from functools import partial
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ import torch.utils.checkpoint as checkpoint
15
+ from timm.models.layers import drop_path, to_2tuple, trunc_normal_
16
+
17
+ from transformers import CLIPImageProcessor
18
+
19
+
20
+ class DropPath(nn.Module):
21
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
22
+ """
23
+ def __init__(self, drop_prob=None):
24
+ super(DropPath, self).__init__()
25
+ self.drop_prob = drop_prob
26
+
27
+ def forward(self, x):
28
+ return drop_path(x, self.drop_prob, self.training)
29
+
30
+ def extra_repr(self) -> str:
31
+ return 'p={}'.format(self.drop_prob)
32
+
33
+ class Mlp(nn.Module):
34
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
35
+ super().__init__()
36
+ out_features = out_features or in_features
37
+ hidden_features = hidden_features or in_features
38
+ self.fc1 = nn.Linear(in_features, hidden_features)
39
+ self.act = act_layer()
40
+ self.fc2 = nn.Linear(hidden_features, out_features)
41
+ self.drop = nn.Dropout(drop)
42
+
43
+ def forward(self, x):
44
+ x = self.fc1(x)
45
+ x = self.act(x)
46
+ # x = self.drop(x)
47
+ # commit this for the orignal BERT implement
48
+ x = self.fc2(x)
49
+ x = self.drop(x)
50
+ return x
51
+
52
+ class Attention(nn.Module):
53
+ def __init__(
54
+ self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
55
+ proj_drop=0., window_size=None, attn_head_dim=None):
56
+ super().__init__()
57
+ self.num_heads = num_heads
58
+ head_dim = dim // num_heads
59
+ if attn_head_dim is not None:
60
+ head_dim = attn_head_dim
61
+ all_head_dim = head_dim * self.num_heads
62
+ self.scale = qk_scale or head_dim ** -0.5
63
+
64
+ self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
65
+ if qkv_bias:
66
+ self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
67
+ self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
68
+ else:
69
+ self.q_bias = None
70
+ self.v_bias = None
71
+
72
+ if window_size:
73
+ self.window_size = window_size
74
+ self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
75
+ self.relative_position_bias_table = nn.Parameter(
76
+ torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
77
+ # cls to token & token 2 cls & cls to cls
78
+
79
+ # get pair-wise relative position index for each token inside the window
80
+ coords_h = torch.arange(window_size[0])
81
+ coords_w = torch.arange(window_size[1])
82
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
83
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
84
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
85
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
86
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
87
+ relative_coords[:, :, 1] += window_size[1] - 1
88
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
89
+ relative_position_index = \
90
+ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
91
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
92
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
93
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
94
+ relative_position_index[0, 0] = self.num_relative_distance - 1
95
+
96
+ self.register_buffer("relative_position_index", relative_position_index)
97
+ else:
98
+ self.window_size = None
99
+ self.relative_position_bias_table = None
100
+ self.relative_position_index = None
101
+
102
+ self.attn_drop = nn.Dropout(attn_drop)
103
+ self.proj = nn.Linear(all_head_dim, dim)
104
+ self.proj_drop = nn.Dropout(proj_drop)
105
+
106
+ def forward(self, x, rel_pos_bias=None):
107
+ B, N, C = x.shape
108
+ qkv_bias = None
109
+ if self.q_bias is not None:
110
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
111
+ # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
112
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
113
+ qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
114
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
115
+
116
+ q = q * self.scale
117
+ attn = (q @ k.transpose(-2, -1))
118
+
119
+ if self.relative_position_bias_table is not None:
120
+ relative_position_bias = \
121
+ self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
122
+ self.window_size[0] * self.window_size[1] + 1,
123
+ self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
124
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
125
+ attn = attn + relative_position_bias.unsqueeze(0)
126
+
127
+ if rel_pos_bias is not None:
128
+ attn = attn + rel_pos_bias
129
+
130
+ attn = attn.softmax(dim=-1)
131
+ attn = self.attn_drop(attn)
132
+
133
+ x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
134
+ x = self.proj(x)
135
+ x = self.proj_drop(x)
136
+ return x
137
+
138
+ class Block(nn.Module):
139
+
140
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
141
+ drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
142
+ window_size=None, attn_head_dim=None):
143
+ super().__init__()
144
+ self.norm1 = norm_layer(dim)
145
+ self.attn = Attention(
146
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
147
+ attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
148
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
149
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
150
+ self.norm2 = norm_layer(dim)
151
+ mlp_hidden_dim = int(dim * mlp_ratio)
152
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
153
+
154
+ if init_values is not None and init_values > 0:
155
+ self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
156
+ self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
157
+ else:
158
+ self.gamma_1, self.gamma_2 = None, None
159
+
160
+ def forward(self, x, rel_pos_bias=None):
161
+ if self.gamma_1 is None:
162
+ x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
163
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
164
+ else:
165
+ x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
166
+ x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
167
+ return x
168
+
169
+ class PatchEmbed(nn.Module):
170
+ """ Image to Patch Embedding
171
+ """
172
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
173
+ super().__init__()
174
+ img_size = to_2tuple(img_size)
175
+ patch_size = to_2tuple(patch_size)
176
+ num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
177
+ self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
178
+ self.img_size = img_size
179
+ self.patch_size = patch_size
180
+ self.num_patches = num_patches
181
+
182
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
183
+
184
+ def forward(self, x, **kwargs):
185
+ B, C, H, W = x.shape
186
+ # FIXME look at relaxing size constraints
187
+ assert H == self.img_size[0] and W == self.img_size[1], \
188
+ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
189
+ x = self.proj(x).flatten(2).transpose(1, 2)
190
+ return x
191
+
192
+ class RelativePositionBias(nn.Module):
193
+
194
+ def __init__(self, window_size, num_heads):
195
+ super().__init__()
196
+ self.window_size = window_size
197
+ self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
198
+ self.relative_position_bias_table = nn.Parameter(
199
+ torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
200
+ # cls to token & token 2 cls & cls to cls
201
+
202
+ # get pair-wise relative position index for each token inside the window
203
+ coords_h = torch.arange(window_size[0])
204
+ coords_w = torch.arange(window_size[1])
205
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
206
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
207
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
208
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
209
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
210
+ relative_coords[:, :, 1] += window_size[1] - 1
211
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
212
+ relative_position_index = \
213
+ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
214
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
215
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
216
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
217
+ relative_position_index[0, 0] = self.num_relative_distance - 1
218
+
219
+ self.register_buffer("relative_position_index", relative_position_index)
220
+
221
+ # trunc_normal_(self.relative_position_bias_table, std=.02)
222
+
223
+ def forward(self):
224
+ relative_position_bias = \
225
+ self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
226
+ self.window_size[0] * self.window_size[1] + 1,
227
+ self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
228
+ return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
229
+
230
+ class VisionTransformer(nn.Module):
231
+ """ Vision Transformer with support for patch or hybrid CNN input stage
232
+ """
233
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
234
+ num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
235
+ drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None,
236
+ use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
237
+ use_mean_pooling=True, init_scale=0.001, use_checkpoint=False):
238
+ super().__init__()
239
+ self.image_size = img_size
240
+ self.patch_size = patch_size
241
+ self.num_classes = num_classes
242
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
243
+
244
+ self.patch_embed = PatchEmbed(
245
+ img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
246
+ num_patches = self.patch_embed.num_patches
247
+
248
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
249
+ if use_abs_pos_emb:
250
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
251
+ else:
252
+ self.pos_embed = None
253
+ self.pos_drop = nn.Dropout(p=drop_rate)
254
+
255
+ if use_shared_rel_pos_bias:
256
+ self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
257
+ else:
258
+ self.rel_pos_bias = None
259
+ self.use_checkpoint = use_checkpoint
260
+
261
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
262
+ self.use_rel_pos_bias = use_rel_pos_bias
263
+ self.blocks = nn.ModuleList([
264
+ Block(
265
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
266
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
267
+ init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
268
+ )
269
+ for i in range(depth)])
270
+ # self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
271
+ # self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
272
+ # self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
273
+
274
+ if self.pos_embed is not None:
275
+ trunc_normal_(self.pos_embed, std=.02)
276
+ trunc_normal_(self.cls_token, std=.02)
277
+ # trunc_normal_(self.mask_token, std=.02)
278
+ # if isinstance(self.head, nn.Linear):
279
+ # trunc_normal_(self.head.weight, std=.02)
280
+ self.apply(self._init_weights)
281
+ self.fix_init_weight()
282
+ # if isinstance(self.head, nn.Linear):
283
+ # self.head.weight.data.mul_(init_scale)
284
+ # self.head.bias.data.mul_(init_scale)
285
+
286
+ def fix_init_weight(self):
287
+ def rescale(param, layer_id):
288
+ param.div_(math.sqrt(2.0 * layer_id))
289
+
290
+ for layer_id, layer in enumerate(self.blocks):
291
+ rescale(layer.attn.proj.weight.data, layer_id + 1)
292
+ rescale(layer.mlp.fc2.weight.data, layer_id + 1)
293
+
294
+ def _init_weights(self, m):
295
+ if isinstance(m, nn.Linear):
296
+ trunc_normal_(m.weight, std=.02)
297
+ if isinstance(m, nn.Linear) and m.bias is not None:
298
+ nn.init.constant_(m.bias, 0)
299
+ elif isinstance(m, nn.LayerNorm):
300
+ nn.init.constant_(m.bias, 0)
301
+ nn.init.constant_(m.weight, 1.0)
302
+
303
+ def forward_features(self, x):
304
+ x = self.patch_embed(x)
305
+ batch_size, seq_len, _ = x.size()
306
+
307
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
308
+ x = torch.cat((cls_tokens, x), dim=1)
309
+ if self.pos_embed is not None:
310
+ x = x + self.pos_embed
311
+ x = self.pos_drop(x)
312
+
313
+ rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
314
+ for blk in self.blocks:
315
+ if self.use_checkpoint:
316
+ x = checkpoint.checkpoint(blk, x, rel_pos_bias)
317
+ else:
318
+ x = blk(x, rel_pos_bias)
319
+ return x
320
+
321
+ def forward(self, x):
322
+ x = self.forward_features(x)
323
+ return x
324
+
325
+ def interpolate_pos_embed(model, checkpoint_model):
326
+ if 'pos_embed' in checkpoint_model:
327
+ pos_embed_checkpoint = checkpoint_model['pos_embed'].float()
328
+ embedding_size = pos_embed_checkpoint.shape[-1]
329
+ num_patches = model.patch_embed.num_patches
330
+ num_extra_tokens = model.pos_embed.shape[-2] - num_patches
331
+ # height (== width) for the checkpoint position embedding
332
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
333
+ # height (== width) for the new position embedding
334
+ new_size = int(num_patches ** 0.5)
335
+ # class_token and dist_token are kept unchanged
336
+ if orig_size != new_size:
337
+ print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
338
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
339
+ # only the position tokens are interpolated
340
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
341
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
342
+ pos_tokens = torch.nn.functional.interpolate(
343
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
344
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
345
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
346
+ checkpoint_model['pos_embed'] = new_pos_embed
347
+
348
+
349
+ class EVACLIPVisionTower(nn.Module):
350
+ def __init__(self, image_size):
351
+ super().__init__()
352
+ self.image_size = image_size
353
+ self.load_model()
354
+
355
+ def load_model(self):
356
+ self.image_processor = CLIPImageProcessor(
357
+ do_resize=True,
358
+ size=dict(shortest_edge=self.image_size),
359
+ resample=3,
360
+ do_center_crop=True,
361
+ crop_size=dict(height=self.image_size, width=self.image_size),
362
+ do_rescale=True,
363
+ rescale_factor=1/255,
364
+ do_normalize=True,
365
+ image_mean=[0.48145466, 0.4578275, 0.40821073],
366
+ image_std=[0.26862954, 0.26130258, 0.27577711],
367
+ do_convert_rgb=True,
368
+ )
369
+ self.vision_tower = VisionTransformer(img_size=self.image_size,
370
+ patch_size=14,
371
+ use_mean_pooling=False,
372
+ embed_dim=1408,
373
+ depth=39,
374
+ num_heads=1408//88,
375
+ mlp_ratio=4.3637,
376
+ qkv_bias=True,
377
+ drop_path_rate=0.,
378
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
379
+ use_checkpoint=False)
380
+ self.ln_vision = nn.LayerNorm(self.vision_tower.embed_dim)
381
+
382
+ @torch.no_grad()
383
+ def forward(self, images):
384
+ if type(images) is list:
385
+ image_features = []
386
+ for image in images:
387
+ image_forward_out = self.ln_vision(self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0)))
388
+ image_feature = image_forward_out.to(image.dtype)
389
+ image_features.append(image_feature)
390
+ else:
391
+ image_forward_outs = self.ln_vision(self.vision_tower(images.to(device=self.device, dtype=self.dtype)))
392
+ image_features = image_forward_outs.to(images.dtype)
393
+
394
+ return image_features
395
+
396
+ @property
397
+ def dummy_feature(self):
398
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
399
+
400
+ @property
401
+ def dtype(self):
402
+ #return self.vision_tower.dtype
403
+ return next(self.vision_tower.parameters()).dtype
404
+
405
+ @property
406
+ def device(self):
407
+ #return self.vision_tower.device
408
+ return next(self.vision_tower.parameters()).device
409
+
410
+ @property
411
+ def hidden_size(self):
412
+ return self.vision_tower.embed_dim
413
+
414
+ @property
415
+ def num_patches(self):
416
+ return (self.vision_tower.image_size // self.vision_tower.patch_size) ** 2
417
+
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.31.0"
7
+ }
modeling_infmllm_chat.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Thanks to the open source code of LLaVA-1.5
2
+
3
+ from abc import ABC, abstractmethod
4
+ from typing import List, Optional, Tuple, Union
5
+ import torch
6
+ import torch.nn as nn
7
+ from torch.nn import CrossEntropyLoss
8
+
9
+ from transformers import LlamaModel, LlamaForCausalLM
10
+ from transformers.modeling_outputs import CausalLMOutputWithPast
11
+
12
+ from .eva_vit import EVACLIPVisionTower
13
+ from .pooler import Pooler
14
+
15
+ IGNORE_INDEX = -100
16
+ IMAGE_TOKEN_INDEX = -200
17
+
18
+
19
+ class LlavaMetaModel:
20
+ def __init__(self, config):
21
+ super(LlavaMetaModel, self).__init__(config)
22
+ self.vision_tower = EVACLIPVisionTower(config.image_size)
23
+ self.mm_projector = Pooler(config.mm_hidden_size, config.hidden_size,
24
+ pool_out_size=config.pool_out_size)
25
+
26
+ def get_vision_tower(self):
27
+ return self.vision_tower
28
+
29
+ class InfMLLMLlamaModel(LlavaMetaModel, LlamaModel):
30
+ def __init__(self, config):
31
+ super(InfMLLMLlamaModel, self).__init__(config)
32
+
33
+
34
+ class InfMLLMMetaForCausalLM(ABC):
35
+
36
+ @abstractmethod
37
+ def get_model(self):
38
+ pass
39
+
40
+ def get_vision_tower(self):
41
+ return self.get_model().get_vision_tower()
42
+
43
+ def encode_images(self, images):
44
+ image_features = self.get_model().get_vision_tower()(images)
45
+ image_features = self.get_model().mm_projector(image_features)
46
+ return image_features
47
+
48
+ def prepare_inputs_labels_for_multimodal(
49
+ self,
50
+ input_ids, # [b, L]
51
+ attention_mask, # [b, L]
52
+ past_key_values, # None
53
+ labels, # [b, L]
54
+ images # [b, 3, 336, 336]
55
+ ):
56
+ vision_tower = self.get_vision_tower()
57
+ if vision_tower is None or images is None or input_ids.shape[1] == 1:
58
+ if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
59
+ attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
60
+ return input_ids, attention_mask, past_key_values, None, labels
61
+
62
+ if type(images) is list or images.ndim == 5:
63
+ concat_images = torch.cat([image for image in images], dim=0)
64
+ image_features = self.encode_images(concat_images)
65
+ split_sizes = [image.shape[0] for image in images]
66
+ image_features = torch.split(image_features, split_sizes, dim=0)
67
+ image_features = [x.flatten(0, 1) for x in image_features]
68
+ else:
69
+ image_features = self.encode_images(images) # [b, 576, 5120]
70
+
71
+ new_input_embeds = []
72
+ new_labels = [] if labels is not None else None
73
+ cur_image_idx = 0
74
+ for batch_idx, cur_input_ids in enumerate(input_ids):
75
+ if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
76
+ # multimodal LLM, but the current sample is not multimodal
77
+ # FIXME: this is a hacky fix, for deepspeed zero3 to work
78
+ half_len = cur_input_ids.shape[0] // 2
79
+ cur_image_features = image_features[cur_image_idx]
80
+ cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
81
+ cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
82
+ cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
83
+ new_input_embeds.append(cur_input_embeds)
84
+ if labels is not None:
85
+ new_labels.append(labels[batch_idx])
86
+ cur_image_idx += 1
87
+ continue
88
+
89
+ image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
90
+ cur_new_input_embeds = []
91
+ if labels is not None:
92
+ cur_labels = labels[batch_idx]
93
+ cur_new_labels = []
94
+ assert cur_labels.shape == cur_input_ids.shape
95
+
96
+ while image_token_indices.numel() > 0:
97
+ cur_image_features = image_features[cur_image_idx]
98
+ image_token_start = image_token_indices[0]
99
+ #if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
100
+ # cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
101
+ # cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
102
+ # cur_new_input_embeds.append(cur_image_features)
103
+ # cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2]))
104
+ # if labels is not None:
105
+ # cur_new_labels.append(cur_labels[:image_token_start])
106
+ # cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
107
+ # cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
108
+ # cur_labels = cur_labels[image_token_start+2:]
109
+ #else:
110
+
111
+ cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
112
+ cur_new_input_embeds.append(cur_image_features)
113
+ if labels is not None:
114
+ cur_new_labels.append(cur_labels[:image_token_start])
115
+ cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
116
+ cur_labels = cur_labels[image_token_start+1:]
117
+ cur_image_idx += 1
118
+
119
+ #if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
120
+ # cur_input_ids = cur_input_ids[image_token_start+2:]
121
+ #else:
122
+ cur_input_ids = cur_input_ids[image_token_start+1:]
123
+ image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
124
+
125
+ if cur_input_ids.numel() > 0:
126
+ #if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
127
+ # cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
128
+ #else:
129
+ cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
130
+ if labels is not None:
131
+ cur_new_labels.append(cur_labels)
132
+ cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
133
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
134
+ new_input_embeds.append(cur_new_input_embeds)
135
+ if labels is not None:
136
+ cur_new_labels = torch.cat(cur_new_labels, dim=0)
137
+ new_labels.append(cur_new_labels)
138
+
139
+ if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
140
+ max_len = max(x.shape[0] for x in new_input_embeds)
141
+
142
+ new_input_embeds_align = []
143
+ for cur_new_embed in new_input_embeds:
144
+ cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
145
+ new_input_embeds_align.append(cur_new_embed)
146
+ new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
147
+
148
+ if labels is not None:
149
+ new_labels_align = []
150
+ _new_labels = new_labels
151
+ for cur_new_label in new_labels:
152
+ cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
153
+ new_labels_align.append(cur_new_label)
154
+ new_labels = torch.stack(new_labels_align, dim=0)
155
+
156
+ if attention_mask is not None:
157
+ new_attention_mask = []
158
+ for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
159
+ new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
160
+ new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
161
+ cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
162
+ new_attention_mask.append(cur_new_attention_mask)
163
+ attention_mask = torch.stack(new_attention_mask, dim=0)
164
+ assert attention_mask.shape == new_labels.shape
165
+ else:
166
+ new_input_embeds = torch.stack(new_input_embeds, dim=0)
167
+ if labels is not None:
168
+ new_labels = torch.stack(new_labels, dim=0)
169
+
170
+ if attention_mask is not None:
171
+ new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
172
+ attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
173
+ assert attention_mask.shape == new_input_embeds.shape[:2]
174
+
175
+ return None, attention_mask, past_key_values, new_input_embeds, new_labels
176
+
177
+
178
+ class InfMLLMLlamaForCausalLM(LlamaForCausalLM, InfMLLMMetaForCausalLM):
179
+
180
+ def __init__(self, config):
181
+ super(LlamaForCausalLM, self).__init__(config)
182
+ self.model = InfMLLMLlamaModel(config)
183
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
184
+
185
+ # Initialize weights and apply final processing
186
+ self.post_init()
187
+
188
+ def get_model(self):
189
+ return self.model
190
+
191
+ def forward(
192
+ self,
193
+ input_ids: torch.LongTensor = None,
194
+ attention_mask: Optional[torch.Tensor] = None,
195
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
196
+ inputs_embeds: Optional[torch.FloatTensor] = None,
197
+ labels: Optional[torch.LongTensor] = None,
198
+ use_cache: Optional[bool] = None,
199
+ output_attentions: Optional[bool] = None,
200
+ output_hidden_states: Optional[bool] = None,
201
+ images: Optional[torch.FloatTensor] = None,
202
+ return_dict: Optional[bool] = None,
203
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
204
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions # False
205
+ output_hidden_states = (
206
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
207
+ ) # False
208
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict # True
209
+
210
+ input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
211
+
212
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
213
+ outputs = self.model(
214
+ input_ids=input_ids,
215
+ attention_mask=attention_mask,
216
+ past_key_values=past_key_values,
217
+ inputs_embeds=inputs_embeds,
218
+ use_cache=use_cache,
219
+ output_attentions=output_attentions,
220
+ output_hidden_states=output_hidden_states,
221
+ return_dict=return_dict
222
+ )
223
+
224
+ hidden_states = outputs[0]
225
+ logits = self.lm_head(hidden_states)
226
+
227
+ loss = None
228
+ if labels is not None:
229
+ # Shift so that tokens < n predict n
230
+ shift_logits = logits[..., :-1, :].contiguous()
231
+ shift_labels = labels[..., 1:].contiguous()
232
+ # Flatten the tokens
233
+ loss_fct = CrossEntropyLoss()
234
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
235
+ shift_labels = shift_labels.view(-1)
236
+ # Enable model/pipeline parallelism
237
+ shift_labels = shift_labels.to(shift_logits.device)
238
+ loss = loss_fct(shift_logits, shift_labels)
239
+
240
+ if not return_dict:
241
+ output = (logits,) + outputs[1:]
242
+ return (loss,) + output if loss is not None else output
243
+
244
+ return CausalLMOutputWithPast(
245
+ loss=loss,
246
+ logits=logits,
247
+ past_key_values=outputs.past_key_values,
248
+ hidden_states=outputs.hidden_states,
249
+ attentions=outputs.attentions,
250
+ )
251
+
252
+ def prepare_inputs_for_generation(
253
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
254
+ ):
255
+ if past_key_values:
256
+ input_ids = input_ids[:, -1:]
257
+
258
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
259
+ if inputs_embeds is not None and past_key_values is None:
260
+ model_inputs = {"inputs_embeds": inputs_embeds}
261
+ else:
262
+ model_inputs = {"input_ids": input_ids}
263
+
264
+ model_inputs.update(
265
+ {
266
+ "past_key_values": past_key_values,
267
+ "use_cache": kwargs.get("use_cache"),
268
+ "attention_mask": attention_mask,
269
+ "images": kwargs.get("images", None),
270
+ }
271
+ )
272
+ return model_inputs
273
+
pooler.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import math
4
+ import random
5
+
6
+
7
+ class Pooler(nn.Module):
8
+ def __init__(self, dim_in, dim_out, pool_out_size):
9
+ super().__init__()
10
+ assert isinstance(pool_out_size, str)
11
+ self.pool_out_size = pool_out_size.split(",")
12
+ print("pool_out_size: {}".format(self.pool_out_size))
13
+
14
+ self.mlp = nn.Sequential(
15
+ nn.Linear(dim_in, dim_out),
16
+ nn.GELU(),
17
+ nn.Linear(dim_out, dim_out)
18
+ )
19
+
20
+ def forward(self, x):
21
+ """
22
+ Args:
23
+ x (torch.Tensor): image features
24
+ shape (b, v, D)
25
+ Returns:
26
+ shape (b, n, D) where n is self.num_latents
27
+ """
28
+ b, v, d = x.shape
29
+ s = int(math.sqrt(v -1))
30
+ x = x[:, 1:, :] # remove cls_token
31
+ x_in = x.reshape(b, s, s, d)
32
+
33
+ pool_out_size = random.choice(self.pool_out_size)
34
+
35
+ if '+' in pool_out_size: # "16+32" means ensemble the pool size of 16 and 32
36
+ pool_out_size_list = [int(p) for p in pool_out_size.split('+')]
37
+ else:
38
+ pool_out_size_list = [int(pool_out_size)]
39
+ pool_out_size_list.sort(reverse=True)
40
+
41
+ x_out = []
42
+ for pool_out_size in pool_out_size_list:
43
+ assert s % pool_out_size == 0
44
+ x = x_in.reshape(b, pool_out_size, s//pool_out_size, pool_out_size, s//pool_out_size, d)
45
+ x = x.permute([0, 1, 3, 5, 2, 4]).reshape(b, pool_out_size * pool_out_size, d, -1).mean(-1)
46
+ x = self.mlp(x) # [b, h*w, d]
47
+ x_out.append(x)
48
+ x_out = torch.cat(x_out, dim=-2)
49
+ return x_out
pytorch_model-00001-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:265d1dc428a989eafe2ffb947cb523cc4ccbf48a4d05ad7d44f89b8de573b6a6
3
+ size 9877990073
pytorch_model-00002-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e47f05b386ae43e0c59237017a270c75bf05ca5bf515547918d9476fd011c50
3
+ size 9894801501
pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4c788ebf2a5624b49df08b4ec4f2bb57f533355536356ae6d270cbe0a0ec86e
3
+ size 9998814489
pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b95882904a2ad0e24328d332c61047aca5d2552b9a171e3a43511590dd5ffce7
3
+ size 1220485980
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,847 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 30991795712
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00004-of-00004.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00004.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00004.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00004.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00004.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00004.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00004.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00004.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00004.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00004.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
268
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
269
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
270
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
271
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
272
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
273
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
274
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
275
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
276
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
277
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
278
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
279
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
280
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
281
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
282
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
283
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
284
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
285
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
286
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
287
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
288
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
289
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
290
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
291
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
292
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
293
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
294
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
295
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
296
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
297
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
298
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
299
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
300
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
301
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
302
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
303
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
304
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
305
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
306
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
307
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
308
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
309
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
310
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
311
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
312
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
313
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
314
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
315
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
316
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
317
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
318
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
319
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
320
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
321
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
322
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
323
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
324
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
325
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
326
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00004.bin",
327
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
328
+ "model.mm_projector.mlp.0.bias": "pytorch_model-00004-of-00004.bin",
329
+ "model.mm_projector.mlp.0.weight": "pytorch_model-00004-of-00004.bin",
330
+ "model.mm_projector.mlp.2.bias": "pytorch_model-00004-of-00004.bin",
331
+ "model.mm_projector.mlp.2.weight": "pytorch_model-00004-of-00004.bin",
332
+ "model.norm.weight": "pytorch_model-00003-of-00004.bin",
333
+ "model.vision_tower.ln_vision.bias": "pytorch_model-00004-of-00004.bin",
334
+ "model.vision_tower.ln_vision.weight": "pytorch_model-00004-of-00004.bin",
335
+ "model.vision_tower.vision_tower.blocks.0.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
336
+ "model.vision_tower.vision_tower.blocks.0.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
337
+ "model.vision_tower.vision_tower.blocks.0.attn.q_bias": "pytorch_model-00003-of-00004.bin",
338
+ "model.vision_tower.vision_tower.blocks.0.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
339
+ "model.vision_tower.vision_tower.blocks.0.attn.v_bias": "pytorch_model-00003-of-00004.bin",
340
+ "model.vision_tower.vision_tower.blocks.0.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
341
+ "model.vision_tower.vision_tower.blocks.0.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
342
+ "model.vision_tower.vision_tower.blocks.0.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
343
+ "model.vision_tower.vision_tower.blocks.0.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
344
+ "model.vision_tower.vision_tower.blocks.0.norm1.bias": "pytorch_model-00003-of-00004.bin",
345
+ "model.vision_tower.vision_tower.blocks.0.norm1.weight": "pytorch_model-00003-of-00004.bin",
346
+ "model.vision_tower.vision_tower.blocks.0.norm2.bias": "pytorch_model-00003-of-00004.bin",
347
+ "model.vision_tower.vision_tower.blocks.0.norm2.weight": "pytorch_model-00003-of-00004.bin",
348
+ "model.vision_tower.vision_tower.blocks.1.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
349
+ "model.vision_tower.vision_tower.blocks.1.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
350
+ "model.vision_tower.vision_tower.blocks.1.attn.q_bias": "pytorch_model-00003-of-00004.bin",
351
+ "model.vision_tower.vision_tower.blocks.1.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
352
+ "model.vision_tower.vision_tower.blocks.1.attn.v_bias": "pytorch_model-00003-of-00004.bin",
353
+ "model.vision_tower.vision_tower.blocks.1.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
354
+ "model.vision_tower.vision_tower.blocks.1.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
355
+ "model.vision_tower.vision_tower.blocks.1.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
356
+ "model.vision_tower.vision_tower.blocks.1.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
357
+ "model.vision_tower.vision_tower.blocks.1.norm1.bias": "pytorch_model-00003-of-00004.bin",
358
+ "model.vision_tower.vision_tower.blocks.1.norm1.weight": "pytorch_model-00003-of-00004.bin",
359
+ "model.vision_tower.vision_tower.blocks.1.norm2.bias": "pytorch_model-00003-of-00004.bin",
360
+ "model.vision_tower.vision_tower.blocks.1.norm2.weight": "pytorch_model-00003-of-00004.bin",
361
+ "model.vision_tower.vision_tower.blocks.10.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
362
+ "model.vision_tower.vision_tower.blocks.10.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
363
+ "model.vision_tower.vision_tower.blocks.10.attn.q_bias": "pytorch_model-00003-of-00004.bin",
364
+ "model.vision_tower.vision_tower.blocks.10.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
365
+ "model.vision_tower.vision_tower.blocks.10.attn.v_bias": "pytorch_model-00003-of-00004.bin",
366
+ "model.vision_tower.vision_tower.blocks.10.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
367
+ "model.vision_tower.vision_tower.blocks.10.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
368
+ "model.vision_tower.vision_tower.blocks.10.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
369
+ "model.vision_tower.vision_tower.blocks.10.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
370
+ "model.vision_tower.vision_tower.blocks.10.norm1.bias": "pytorch_model-00003-of-00004.bin",
371
+ "model.vision_tower.vision_tower.blocks.10.norm1.weight": "pytorch_model-00003-of-00004.bin",
372
+ "model.vision_tower.vision_tower.blocks.10.norm2.bias": "pytorch_model-00003-of-00004.bin",
373
+ "model.vision_tower.vision_tower.blocks.10.norm2.weight": "pytorch_model-00003-of-00004.bin",
374
+ "model.vision_tower.vision_tower.blocks.11.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
375
+ "model.vision_tower.vision_tower.blocks.11.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
376
+ "model.vision_tower.vision_tower.blocks.11.attn.q_bias": "pytorch_model-00003-of-00004.bin",
377
+ "model.vision_tower.vision_tower.blocks.11.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
378
+ "model.vision_tower.vision_tower.blocks.11.attn.v_bias": "pytorch_model-00003-of-00004.bin",
379
+ "model.vision_tower.vision_tower.blocks.11.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
380
+ "model.vision_tower.vision_tower.blocks.11.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
381
+ "model.vision_tower.vision_tower.blocks.11.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
382
+ "model.vision_tower.vision_tower.blocks.11.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
383
+ "model.vision_tower.vision_tower.blocks.11.norm1.bias": "pytorch_model-00003-of-00004.bin",
384
+ "model.vision_tower.vision_tower.blocks.11.norm1.weight": "pytorch_model-00003-of-00004.bin",
385
+ "model.vision_tower.vision_tower.blocks.11.norm2.bias": "pytorch_model-00003-of-00004.bin",
386
+ "model.vision_tower.vision_tower.blocks.11.norm2.weight": "pytorch_model-00003-of-00004.bin",
387
+ "model.vision_tower.vision_tower.blocks.12.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
388
+ "model.vision_tower.vision_tower.blocks.12.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
389
+ "model.vision_tower.vision_tower.blocks.12.attn.q_bias": "pytorch_model-00003-of-00004.bin",
390
+ "model.vision_tower.vision_tower.blocks.12.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
391
+ "model.vision_tower.vision_tower.blocks.12.attn.v_bias": "pytorch_model-00003-of-00004.bin",
392
+ "model.vision_tower.vision_tower.blocks.12.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
393
+ "model.vision_tower.vision_tower.blocks.12.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
394
+ "model.vision_tower.vision_tower.blocks.12.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
395
+ "model.vision_tower.vision_tower.blocks.12.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
396
+ "model.vision_tower.vision_tower.blocks.12.norm1.bias": "pytorch_model-00003-of-00004.bin",
397
+ "model.vision_tower.vision_tower.blocks.12.norm1.weight": "pytorch_model-00003-of-00004.bin",
398
+ "model.vision_tower.vision_tower.blocks.12.norm2.bias": "pytorch_model-00003-of-00004.bin",
399
+ "model.vision_tower.vision_tower.blocks.12.norm2.weight": "pytorch_model-00003-of-00004.bin",
400
+ "model.vision_tower.vision_tower.blocks.13.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
401
+ "model.vision_tower.vision_tower.blocks.13.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
402
+ "model.vision_tower.vision_tower.blocks.13.attn.q_bias": "pytorch_model-00003-of-00004.bin",
403
+ "model.vision_tower.vision_tower.blocks.13.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
404
+ "model.vision_tower.vision_tower.blocks.13.attn.v_bias": "pytorch_model-00003-of-00004.bin",
405
+ "model.vision_tower.vision_tower.blocks.13.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
406
+ "model.vision_tower.vision_tower.blocks.13.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
407
+ "model.vision_tower.vision_tower.blocks.13.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
408
+ "model.vision_tower.vision_tower.blocks.13.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
409
+ "model.vision_tower.vision_tower.blocks.13.norm1.bias": "pytorch_model-00003-of-00004.bin",
410
+ "model.vision_tower.vision_tower.blocks.13.norm1.weight": "pytorch_model-00003-of-00004.bin",
411
+ "model.vision_tower.vision_tower.blocks.13.norm2.bias": "pytorch_model-00003-of-00004.bin",
412
+ "model.vision_tower.vision_tower.blocks.13.norm2.weight": "pytorch_model-00003-of-00004.bin",
413
+ "model.vision_tower.vision_tower.blocks.14.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
414
+ "model.vision_tower.vision_tower.blocks.14.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
415
+ "model.vision_tower.vision_tower.blocks.14.attn.q_bias": "pytorch_model-00003-of-00004.bin",
416
+ "model.vision_tower.vision_tower.blocks.14.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
417
+ "model.vision_tower.vision_tower.blocks.14.attn.v_bias": "pytorch_model-00003-of-00004.bin",
418
+ "model.vision_tower.vision_tower.blocks.14.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
419
+ "model.vision_tower.vision_tower.blocks.14.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
420
+ "model.vision_tower.vision_tower.blocks.14.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
421
+ "model.vision_tower.vision_tower.blocks.14.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
422
+ "model.vision_tower.vision_tower.blocks.14.norm1.bias": "pytorch_model-00003-of-00004.bin",
423
+ "model.vision_tower.vision_tower.blocks.14.norm1.weight": "pytorch_model-00003-of-00004.bin",
424
+ "model.vision_tower.vision_tower.blocks.14.norm2.bias": "pytorch_model-00003-of-00004.bin",
425
+ "model.vision_tower.vision_tower.blocks.14.norm2.weight": "pytorch_model-00003-of-00004.bin",
426
+ "model.vision_tower.vision_tower.blocks.15.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
427
+ "model.vision_tower.vision_tower.blocks.15.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
428
+ "model.vision_tower.vision_tower.blocks.15.attn.q_bias": "pytorch_model-00003-of-00004.bin",
429
+ "model.vision_tower.vision_tower.blocks.15.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
430
+ "model.vision_tower.vision_tower.blocks.15.attn.v_bias": "pytorch_model-00003-of-00004.bin",
431
+ "model.vision_tower.vision_tower.blocks.15.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
432
+ "model.vision_tower.vision_tower.blocks.15.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
433
+ "model.vision_tower.vision_tower.blocks.15.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
434
+ "model.vision_tower.vision_tower.blocks.15.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
435
+ "model.vision_tower.vision_tower.blocks.15.norm1.bias": "pytorch_model-00003-of-00004.bin",
436
+ "model.vision_tower.vision_tower.blocks.15.norm1.weight": "pytorch_model-00003-of-00004.bin",
437
+ "model.vision_tower.vision_tower.blocks.15.norm2.bias": "pytorch_model-00003-of-00004.bin",
438
+ "model.vision_tower.vision_tower.blocks.15.norm2.weight": "pytorch_model-00003-of-00004.bin",
439
+ "model.vision_tower.vision_tower.blocks.16.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
440
+ "model.vision_tower.vision_tower.blocks.16.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
441
+ "model.vision_tower.vision_tower.blocks.16.attn.q_bias": "pytorch_model-00003-of-00004.bin",
442
+ "model.vision_tower.vision_tower.blocks.16.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
443
+ "model.vision_tower.vision_tower.blocks.16.attn.v_bias": "pytorch_model-00003-of-00004.bin",
444
+ "model.vision_tower.vision_tower.blocks.16.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
445
+ "model.vision_tower.vision_tower.blocks.16.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
446
+ "model.vision_tower.vision_tower.blocks.16.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
447
+ "model.vision_tower.vision_tower.blocks.16.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
448
+ "model.vision_tower.vision_tower.blocks.16.norm1.bias": "pytorch_model-00003-of-00004.bin",
449
+ "model.vision_tower.vision_tower.blocks.16.norm1.weight": "pytorch_model-00003-of-00004.bin",
450
+ "model.vision_tower.vision_tower.blocks.16.norm2.bias": "pytorch_model-00003-of-00004.bin",
451
+ "model.vision_tower.vision_tower.blocks.16.norm2.weight": "pytorch_model-00003-of-00004.bin",
452
+ "model.vision_tower.vision_tower.blocks.17.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
453
+ "model.vision_tower.vision_tower.blocks.17.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
454
+ "model.vision_tower.vision_tower.blocks.17.attn.q_bias": "pytorch_model-00003-of-00004.bin",
455
+ "model.vision_tower.vision_tower.blocks.17.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
456
+ "model.vision_tower.vision_tower.blocks.17.attn.v_bias": "pytorch_model-00003-of-00004.bin",
457
+ "model.vision_tower.vision_tower.blocks.17.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
458
+ "model.vision_tower.vision_tower.blocks.17.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
459
+ "model.vision_tower.vision_tower.blocks.17.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
460
+ "model.vision_tower.vision_tower.blocks.17.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
461
+ "model.vision_tower.vision_tower.blocks.17.norm1.bias": "pytorch_model-00003-of-00004.bin",
462
+ "model.vision_tower.vision_tower.blocks.17.norm1.weight": "pytorch_model-00003-of-00004.bin",
463
+ "model.vision_tower.vision_tower.blocks.17.norm2.bias": "pytorch_model-00003-of-00004.bin",
464
+ "model.vision_tower.vision_tower.blocks.17.norm2.weight": "pytorch_model-00003-of-00004.bin",
465
+ "model.vision_tower.vision_tower.blocks.18.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
466
+ "model.vision_tower.vision_tower.blocks.18.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
467
+ "model.vision_tower.vision_tower.blocks.18.attn.q_bias": "pytorch_model-00003-of-00004.bin",
468
+ "model.vision_tower.vision_tower.blocks.18.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
469
+ "model.vision_tower.vision_tower.blocks.18.attn.v_bias": "pytorch_model-00003-of-00004.bin",
470
+ "model.vision_tower.vision_tower.blocks.18.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
471
+ "model.vision_tower.vision_tower.blocks.18.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
472
+ "model.vision_tower.vision_tower.blocks.18.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
473
+ "model.vision_tower.vision_tower.blocks.18.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
474
+ "model.vision_tower.vision_tower.blocks.18.norm1.bias": "pytorch_model-00003-of-00004.bin",
475
+ "model.vision_tower.vision_tower.blocks.18.norm1.weight": "pytorch_model-00003-of-00004.bin",
476
+ "model.vision_tower.vision_tower.blocks.18.norm2.bias": "pytorch_model-00003-of-00004.bin",
477
+ "model.vision_tower.vision_tower.blocks.18.norm2.weight": "pytorch_model-00003-of-00004.bin",
478
+ "model.vision_tower.vision_tower.blocks.19.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
479
+ "model.vision_tower.vision_tower.blocks.19.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
480
+ "model.vision_tower.vision_tower.blocks.19.attn.q_bias": "pytorch_model-00003-of-00004.bin",
481
+ "model.vision_tower.vision_tower.blocks.19.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
482
+ "model.vision_tower.vision_tower.blocks.19.attn.v_bias": "pytorch_model-00003-of-00004.bin",
483
+ "model.vision_tower.vision_tower.blocks.19.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
484
+ "model.vision_tower.vision_tower.blocks.19.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
485
+ "model.vision_tower.vision_tower.blocks.19.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
486
+ "model.vision_tower.vision_tower.blocks.19.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
487
+ "model.vision_tower.vision_tower.blocks.19.norm1.bias": "pytorch_model-00003-of-00004.bin",
488
+ "model.vision_tower.vision_tower.blocks.19.norm1.weight": "pytorch_model-00003-of-00004.bin",
489
+ "model.vision_tower.vision_tower.blocks.19.norm2.bias": "pytorch_model-00003-of-00004.bin",
490
+ "model.vision_tower.vision_tower.blocks.19.norm2.weight": "pytorch_model-00003-of-00004.bin",
491
+ "model.vision_tower.vision_tower.blocks.2.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
492
+ "model.vision_tower.vision_tower.blocks.2.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
493
+ "model.vision_tower.vision_tower.blocks.2.attn.q_bias": "pytorch_model-00003-of-00004.bin",
494
+ "model.vision_tower.vision_tower.blocks.2.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
495
+ "model.vision_tower.vision_tower.blocks.2.attn.v_bias": "pytorch_model-00003-of-00004.bin",
496
+ "model.vision_tower.vision_tower.blocks.2.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
497
+ "model.vision_tower.vision_tower.blocks.2.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
498
+ "model.vision_tower.vision_tower.blocks.2.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
499
+ "model.vision_tower.vision_tower.blocks.2.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
500
+ "model.vision_tower.vision_tower.blocks.2.norm1.bias": "pytorch_model-00003-of-00004.bin",
501
+ "model.vision_tower.vision_tower.blocks.2.norm1.weight": "pytorch_model-00003-of-00004.bin",
502
+ "model.vision_tower.vision_tower.blocks.2.norm2.bias": "pytorch_model-00003-of-00004.bin",
503
+ "model.vision_tower.vision_tower.blocks.2.norm2.weight": "pytorch_model-00003-of-00004.bin",
504
+ "model.vision_tower.vision_tower.blocks.20.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
505
+ "model.vision_tower.vision_tower.blocks.20.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
506
+ "model.vision_tower.vision_tower.blocks.20.attn.q_bias": "pytorch_model-00003-of-00004.bin",
507
+ "model.vision_tower.vision_tower.blocks.20.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
508
+ "model.vision_tower.vision_tower.blocks.20.attn.v_bias": "pytorch_model-00003-of-00004.bin",
509
+ "model.vision_tower.vision_tower.blocks.20.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
510
+ "model.vision_tower.vision_tower.blocks.20.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
511
+ "model.vision_tower.vision_tower.blocks.20.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
512
+ "model.vision_tower.vision_tower.blocks.20.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
513
+ "model.vision_tower.vision_tower.blocks.20.norm1.bias": "pytorch_model-00003-of-00004.bin",
514
+ "model.vision_tower.vision_tower.blocks.20.norm1.weight": "pytorch_model-00003-of-00004.bin",
515
+ "model.vision_tower.vision_tower.blocks.20.norm2.bias": "pytorch_model-00003-of-00004.bin",
516
+ "model.vision_tower.vision_tower.blocks.20.norm2.weight": "pytorch_model-00003-of-00004.bin",
517
+ "model.vision_tower.vision_tower.blocks.21.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
518
+ "model.vision_tower.vision_tower.blocks.21.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
519
+ "model.vision_tower.vision_tower.blocks.21.attn.q_bias": "pytorch_model-00003-of-00004.bin",
520
+ "model.vision_tower.vision_tower.blocks.21.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
521
+ "model.vision_tower.vision_tower.blocks.21.attn.v_bias": "pytorch_model-00003-of-00004.bin",
522
+ "model.vision_tower.vision_tower.blocks.21.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
523
+ "model.vision_tower.vision_tower.blocks.21.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
524
+ "model.vision_tower.vision_tower.blocks.21.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
525
+ "model.vision_tower.vision_tower.blocks.21.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
526
+ "model.vision_tower.vision_tower.blocks.21.norm1.bias": "pytorch_model-00003-of-00004.bin",
527
+ "model.vision_tower.vision_tower.blocks.21.norm1.weight": "pytorch_model-00003-of-00004.bin",
528
+ "model.vision_tower.vision_tower.blocks.21.norm2.bias": "pytorch_model-00003-of-00004.bin",
529
+ "model.vision_tower.vision_tower.blocks.21.norm2.weight": "pytorch_model-00003-of-00004.bin",
530
+ "model.vision_tower.vision_tower.blocks.22.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
531
+ "model.vision_tower.vision_tower.blocks.22.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
532
+ "model.vision_tower.vision_tower.blocks.22.attn.q_bias": "pytorch_model-00003-of-00004.bin",
533
+ "model.vision_tower.vision_tower.blocks.22.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
534
+ "model.vision_tower.vision_tower.blocks.22.attn.v_bias": "pytorch_model-00003-of-00004.bin",
535
+ "model.vision_tower.vision_tower.blocks.22.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
536
+ "model.vision_tower.vision_tower.blocks.22.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
537
+ "model.vision_tower.vision_tower.blocks.22.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
538
+ "model.vision_tower.vision_tower.blocks.22.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
539
+ "model.vision_tower.vision_tower.blocks.22.norm1.bias": "pytorch_model-00003-of-00004.bin",
540
+ "model.vision_tower.vision_tower.blocks.22.norm1.weight": "pytorch_model-00003-of-00004.bin",
541
+ "model.vision_tower.vision_tower.blocks.22.norm2.bias": "pytorch_model-00003-of-00004.bin",
542
+ "model.vision_tower.vision_tower.blocks.22.norm2.weight": "pytorch_model-00003-of-00004.bin",
543
+ "model.vision_tower.vision_tower.blocks.23.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
544
+ "model.vision_tower.vision_tower.blocks.23.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
545
+ "model.vision_tower.vision_tower.blocks.23.attn.q_bias": "pytorch_model-00003-of-00004.bin",
546
+ "model.vision_tower.vision_tower.blocks.23.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
547
+ "model.vision_tower.vision_tower.blocks.23.attn.v_bias": "pytorch_model-00003-of-00004.bin",
548
+ "model.vision_tower.vision_tower.blocks.23.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
549
+ "model.vision_tower.vision_tower.blocks.23.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
550
+ "model.vision_tower.vision_tower.blocks.23.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
551
+ "model.vision_tower.vision_tower.blocks.23.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
552
+ "model.vision_tower.vision_tower.blocks.23.norm1.bias": "pytorch_model-00003-of-00004.bin",
553
+ "model.vision_tower.vision_tower.blocks.23.norm1.weight": "pytorch_model-00003-of-00004.bin",
554
+ "model.vision_tower.vision_tower.blocks.23.norm2.bias": "pytorch_model-00003-of-00004.bin",
555
+ "model.vision_tower.vision_tower.blocks.23.norm2.weight": "pytorch_model-00003-of-00004.bin",
556
+ "model.vision_tower.vision_tower.blocks.24.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
557
+ "model.vision_tower.vision_tower.blocks.24.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
558
+ "model.vision_tower.vision_tower.blocks.24.attn.q_bias": "pytorch_model-00003-of-00004.bin",
559
+ "model.vision_tower.vision_tower.blocks.24.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
560
+ "model.vision_tower.vision_tower.blocks.24.attn.v_bias": "pytorch_model-00003-of-00004.bin",
561
+ "model.vision_tower.vision_tower.blocks.24.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
562
+ "model.vision_tower.vision_tower.blocks.24.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
563
+ "model.vision_tower.vision_tower.blocks.24.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
564
+ "model.vision_tower.vision_tower.blocks.24.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
565
+ "model.vision_tower.vision_tower.blocks.24.norm1.bias": "pytorch_model-00003-of-00004.bin",
566
+ "model.vision_tower.vision_tower.blocks.24.norm1.weight": "pytorch_model-00003-of-00004.bin",
567
+ "model.vision_tower.vision_tower.blocks.24.norm2.bias": "pytorch_model-00003-of-00004.bin",
568
+ "model.vision_tower.vision_tower.blocks.24.norm2.weight": "pytorch_model-00003-of-00004.bin",
569
+ "model.vision_tower.vision_tower.blocks.25.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
570
+ "model.vision_tower.vision_tower.blocks.25.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
571
+ "model.vision_tower.vision_tower.blocks.25.attn.q_bias": "pytorch_model-00003-of-00004.bin",
572
+ "model.vision_tower.vision_tower.blocks.25.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
573
+ "model.vision_tower.vision_tower.blocks.25.attn.v_bias": "pytorch_model-00003-of-00004.bin",
574
+ "model.vision_tower.vision_tower.blocks.25.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
575
+ "model.vision_tower.vision_tower.blocks.25.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
576
+ "model.vision_tower.vision_tower.blocks.25.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
577
+ "model.vision_tower.vision_tower.blocks.25.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
578
+ "model.vision_tower.vision_tower.blocks.25.norm1.bias": "pytorch_model-00003-of-00004.bin",
579
+ "model.vision_tower.vision_tower.blocks.25.norm1.weight": "pytorch_model-00003-of-00004.bin",
580
+ "model.vision_tower.vision_tower.blocks.25.norm2.bias": "pytorch_model-00003-of-00004.bin",
581
+ "model.vision_tower.vision_tower.blocks.25.norm2.weight": "pytorch_model-00003-of-00004.bin",
582
+ "model.vision_tower.vision_tower.blocks.26.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
583
+ "model.vision_tower.vision_tower.blocks.26.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
584
+ "model.vision_tower.vision_tower.blocks.26.attn.q_bias": "pytorch_model-00003-of-00004.bin",
585
+ "model.vision_tower.vision_tower.blocks.26.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
586
+ "model.vision_tower.vision_tower.blocks.26.attn.v_bias": "pytorch_model-00003-of-00004.bin",
587
+ "model.vision_tower.vision_tower.blocks.26.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
588
+ "model.vision_tower.vision_tower.blocks.26.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
589
+ "model.vision_tower.vision_tower.blocks.26.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
590
+ "model.vision_tower.vision_tower.blocks.26.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
591
+ "model.vision_tower.vision_tower.blocks.26.norm1.bias": "pytorch_model-00003-of-00004.bin",
592
+ "model.vision_tower.vision_tower.blocks.26.norm1.weight": "pytorch_model-00003-of-00004.bin",
593
+ "model.vision_tower.vision_tower.blocks.26.norm2.bias": "pytorch_model-00003-of-00004.bin",
594
+ "model.vision_tower.vision_tower.blocks.26.norm2.weight": "pytorch_model-00003-of-00004.bin",
595
+ "model.vision_tower.vision_tower.blocks.27.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
596
+ "model.vision_tower.vision_tower.blocks.27.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
597
+ "model.vision_tower.vision_tower.blocks.27.attn.q_bias": "pytorch_model-00003-of-00004.bin",
598
+ "model.vision_tower.vision_tower.blocks.27.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
599
+ "model.vision_tower.vision_tower.blocks.27.attn.v_bias": "pytorch_model-00003-of-00004.bin",
600
+ "model.vision_tower.vision_tower.blocks.27.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
601
+ "model.vision_tower.vision_tower.blocks.27.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
602
+ "model.vision_tower.vision_tower.blocks.27.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
603
+ "model.vision_tower.vision_tower.blocks.27.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
604
+ "model.vision_tower.vision_tower.blocks.27.norm1.bias": "pytorch_model-00003-of-00004.bin",
605
+ "model.vision_tower.vision_tower.blocks.27.norm1.weight": "pytorch_model-00003-of-00004.bin",
606
+ "model.vision_tower.vision_tower.blocks.27.norm2.bias": "pytorch_model-00003-of-00004.bin",
607
+ "model.vision_tower.vision_tower.blocks.27.norm2.weight": "pytorch_model-00003-of-00004.bin",
608
+ "model.vision_tower.vision_tower.blocks.28.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
609
+ "model.vision_tower.vision_tower.blocks.28.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
610
+ "model.vision_tower.vision_tower.blocks.28.attn.q_bias": "pytorch_model-00003-of-00004.bin",
611
+ "model.vision_tower.vision_tower.blocks.28.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
612
+ "model.vision_tower.vision_tower.blocks.28.attn.v_bias": "pytorch_model-00003-of-00004.bin",
613
+ "model.vision_tower.vision_tower.blocks.28.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
614
+ "model.vision_tower.vision_tower.blocks.28.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
615
+ "model.vision_tower.vision_tower.blocks.28.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
616
+ "model.vision_tower.vision_tower.blocks.28.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
617
+ "model.vision_tower.vision_tower.blocks.28.norm1.bias": "pytorch_model-00003-of-00004.bin",
618
+ "model.vision_tower.vision_tower.blocks.28.norm1.weight": "pytorch_model-00003-of-00004.bin",
619
+ "model.vision_tower.vision_tower.blocks.28.norm2.bias": "pytorch_model-00003-of-00004.bin",
620
+ "model.vision_tower.vision_tower.blocks.28.norm2.weight": "pytorch_model-00003-of-00004.bin",
621
+ "model.vision_tower.vision_tower.blocks.29.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
622
+ "model.vision_tower.vision_tower.blocks.29.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
623
+ "model.vision_tower.vision_tower.blocks.29.attn.q_bias": "pytorch_model-00003-of-00004.bin",
624
+ "model.vision_tower.vision_tower.blocks.29.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
625
+ "model.vision_tower.vision_tower.blocks.29.attn.v_bias": "pytorch_model-00003-of-00004.bin",
626
+ "model.vision_tower.vision_tower.blocks.29.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
627
+ "model.vision_tower.vision_tower.blocks.29.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
628
+ "model.vision_tower.vision_tower.blocks.29.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
629
+ "model.vision_tower.vision_tower.blocks.29.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
630
+ "model.vision_tower.vision_tower.blocks.29.norm1.bias": "pytorch_model-00003-of-00004.bin",
631
+ "model.vision_tower.vision_tower.blocks.29.norm1.weight": "pytorch_model-00003-of-00004.bin",
632
+ "model.vision_tower.vision_tower.blocks.29.norm2.bias": "pytorch_model-00003-of-00004.bin",
633
+ "model.vision_tower.vision_tower.blocks.29.norm2.weight": "pytorch_model-00003-of-00004.bin",
634
+ "model.vision_tower.vision_tower.blocks.3.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
635
+ "model.vision_tower.vision_tower.blocks.3.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
636
+ "model.vision_tower.vision_tower.blocks.3.attn.q_bias": "pytorch_model-00003-of-00004.bin",
637
+ "model.vision_tower.vision_tower.blocks.3.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
638
+ "model.vision_tower.vision_tower.blocks.3.attn.v_bias": "pytorch_model-00003-of-00004.bin",
639
+ "model.vision_tower.vision_tower.blocks.3.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
640
+ "model.vision_tower.vision_tower.blocks.3.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
641
+ "model.vision_tower.vision_tower.blocks.3.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
642
+ "model.vision_tower.vision_tower.blocks.3.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
643
+ "model.vision_tower.vision_tower.blocks.3.norm1.bias": "pytorch_model-00003-of-00004.bin",
644
+ "model.vision_tower.vision_tower.blocks.3.norm1.weight": "pytorch_model-00003-of-00004.bin",
645
+ "model.vision_tower.vision_tower.blocks.3.norm2.bias": "pytorch_model-00003-of-00004.bin",
646
+ "model.vision_tower.vision_tower.blocks.3.norm2.weight": "pytorch_model-00003-of-00004.bin",
647
+ "model.vision_tower.vision_tower.blocks.30.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
648
+ "model.vision_tower.vision_tower.blocks.30.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
649
+ "model.vision_tower.vision_tower.blocks.30.attn.q_bias": "pytorch_model-00003-of-00004.bin",
650
+ "model.vision_tower.vision_tower.blocks.30.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
651
+ "model.vision_tower.vision_tower.blocks.30.attn.v_bias": "pytorch_model-00003-of-00004.bin",
652
+ "model.vision_tower.vision_tower.blocks.30.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
653
+ "model.vision_tower.vision_tower.blocks.30.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
654
+ "model.vision_tower.vision_tower.blocks.30.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
655
+ "model.vision_tower.vision_tower.blocks.30.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
656
+ "model.vision_tower.vision_tower.blocks.30.norm1.bias": "pytorch_model-00003-of-00004.bin",
657
+ "model.vision_tower.vision_tower.blocks.30.norm1.weight": "pytorch_model-00003-of-00004.bin",
658
+ "model.vision_tower.vision_tower.blocks.30.norm2.bias": "pytorch_model-00003-of-00004.bin",
659
+ "model.vision_tower.vision_tower.blocks.30.norm2.weight": "pytorch_model-00003-of-00004.bin",
660
+ "model.vision_tower.vision_tower.blocks.31.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
661
+ "model.vision_tower.vision_tower.blocks.31.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
662
+ "model.vision_tower.vision_tower.blocks.31.attn.q_bias": "pytorch_model-00003-of-00004.bin",
663
+ "model.vision_tower.vision_tower.blocks.31.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
664
+ "model.vision_tower.vision_tower.blocks.31.attn.v_bias": "pytorch_model-00003-of-00004.bin",
665
+ "model.vision_tower.vision_tower.blocks.31.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
666
+ "model.vision_tower.vision_tower.blocks.31.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
667
+ "model.vision_tower.vision_tower.blocks.31.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
668
+ "model.vision_tower.vision_tower.blocks.31.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
669
+ "model.vision_tower.vision_tower.blocks.31.norm1.bias": "pytorch_model-00003-of-00004.bin",
670
+ "model.vision_tower.vision_tower.blocks.31.norm1.weight": "pytorch_model-00003-of-00004.bin",
671
+ "model.vision_tower.vision_tower.blocks.31.norm2.bias": "pytorch_model-00003-of-00004.bin",
672
+ "model.vision_tower.vision_tower.blocks.31.norm2.weight": "pytorch_model-00003-of-00004.bin",
673
+ "model.vision_tower.vision_tower.blocks.32.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
674
+ "model.vision_tower.vision_tower.blocks.32.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
675
+ "model.vision_tower.vision_tower.blocks.32.attn.q_bias": "pytorch_model-00003-of-00004.bin",
676
+ "model.vision_tower.vision_tower.blocks.32.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
677
+ "model.vision_tower.vision_tower.blocks.32.attn.v_bias": "pytorch_model-00003-of-00004.bin",
678
+ "model.vision_tower.vision_tower.blocks.32.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
679
+ "model.vision_tower.vision_tower.blocks.32.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
680
+ "model.vision_tower.vision_tower.blocks.32.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
681
+ "model.vision_tower.vision_tower.blocks.32.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
682
+ "model.vision_tower.vision_tower.blocks.32.norm1.bias": "pytorch_model-00003-of-00004.bin",
683
+ "model.vision_tower.vision_tower.blocks.32.norm1.weight": "pytorch_model-00003-of-00004.bin",
684
+ "model.vision_tower.vision_tower.blocks.32.norm2.bias": "pytorch_model-00003-of-00004.bin",
685
+ "model.vision_tower.vision_tower.blocks.32.norm2.weight": "pytorch_model-00003-of-00004.bin",
686
+ "model.vision_tower.vision_tower.blocks.33.attn.proj.bias": "pytorch_model-00004-of-00004.bin",
687
+ "model.vision_tower.vision_tower.blocks.33.attn.proj.weight": "pytorch_model-00004-of-00004.bin",
688
+ "model.vision_tower.vision_tower.blocks.33.attn.q_bias": "pytorch_model-00003-of-00004.bin",
689
+ "model.vision_tower.vision_tower.blocks.33.attn.qkv.weight": "pytorch_model-00004-of-00004.bin",
690
+ "model.vision_tower.vision_tower.blocks.33.attn.v_bias": "pytorch_model-00003-of-00004.bin",
691
+ "model.vision_tower.vision_tower.blocks.33.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
692
+ "model.vision_tower.vision_tower.blocks.33.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
693
+ "model.vision_tower.vision_tower.blocks.33.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
694
+ "model.vision_tower.vision_tower.blocks.33.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
695
+ "model.vision_tower.vision_tower.blocks.33.norm1.bias": "pytorch_model-00003-of-00004.bin",
696
+ "model.vision_tower.vision_tower.blocks.33.norm1.weight": "pytorch_model-00003-of-00004.bin",
697
+ "model.vision_tower.vision_tower.blocks.33.norm2.bias": "pytorch_model-00004-of-00004.bin",
698
+ "model.vision_tower.vision_tower.blocks.33.norm2.weight": "pytorch_model-00004-of-00004.bin",
699
+ "model.vision_tower.vision_tower.blocks.34.attn.proj.bias": "pytorch_model-00004-of-00004.bin",
700
+ "model.vision_tower.vision_tower.blocks.34.attn.proj.weight": "pytorch_model-00004-of-00004.bin",
701
+ "model.vision_tower.vision_tower.blocks.34.attn.q_bias": "pytorch_model-00004-of-00004.bin",
702
+ "model.vision_tower.vision_tower.blocks.34.attn.qkv.weight": "pytorch_model-00004-of-00004.bin",
703
+ "model.vision_tower.vision_tower.blocks.34.attn.v_bias": "pytorch_model-00004-of-00004.bin",
704
+ "model.vision_tower.vision_tower.blocks.34.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
705
+ "model.vision_tower.vision_tower.blocks.34.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
706
+ "model.vision_tower.vision_tower.blocks.34.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
707
+ "model.vision_tower.vision_tower.blocks.34.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
708
+ "model.vision_tower.vision_tower.blocks.34.norm1.bias": "pytorch_model-00004-of-00004.bin",
709
+ "model.vision_tower.vision_tower.blocks.34.norm1.weight": "pytorch_model-00004-of-00004.bin",
710
+ "model.vision_tower.vision_tower.blocks.34.norm2.bias": "pytorch_model-00004-of-00004.bin",
711
+ "model.vision_tower.vision_tower.blocks.34.norm2.weight": "pytorch_model-00004-of-00004.bin",
712
+ "model.vision_tower.vision_tower.blocks.35.attn.proj.bias": "pytorch_model-00004-of-00004.bin",
713
+ "model.vision_tower.vision_tower.blocks.35.attn.proj.weight": "pytorch_model-00004-of-00004.bin",
714
+ "model.vision_tower.vision_tower.blocks.35.attn.q_bias": "pytorch_model-00004-of-00004.bin",
715
+ "model.vision_tower.vision_tower.blocks.35.attn.qkv.weight": "pytorch_model-00004-of-00004.bin",
716
+ "model.vision_tower.vision_tower.blocks.35.attn.v_bias": "pytorch_model-00004-of-00004.bin",
717
+ "model.vision_tower.vision_tower.blocks.35.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
718
+ "model.vision_tower.vision_tower.blocks.35.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
719
+ "model.vision_tower.vision_tower.blocks.35.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
720
+ "model.vision_tower.vision_tower.blocks.35.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
721
+ "model.vision_tower.vision_tower.blocks.35.norm1.bias": "pytorch_model-00004-of-00004.bin",
722
+ "model.vision_tower.vision_tower.blocks.35.norm1.weight": "pytorch_model-00004-of-00004.bin",
723
+ "model.vision_tower.vision_tower.blocks.35.norm2.bias": "pytorch_model-00004-of-00004.bin",
724
+ "model.vision_tower.vision_tower.blocks.35.norm2.weight": "pytorch_model-00004-of-00004.bin",
725
+ "model.vision_tower.vision_tower.blocks.36.attn.proj.bias": "pytorch_model-00004-of-00004.bin",
726
+ "model.vision_tower.vision_tower.blocks.36.attn.proj.weight": "pytorch_model-00004-of-00004.bin",
727
+ "model.vision_tower.vision_tower.blocks.36.attn.q_bias": "pytorch_model-00004-of-00004.bin",
728
+ "model.vision_tower.vision_tower.blocks.36.attn.qkv.weight": "pytorch_model-00004-of-00004.bin",
729
+ "model.vision_tower.vision_tower.blocks.36.attn.v_bias": "pytorch_model-00004-of-00004.bin",
730
+ "model.vision_tower.vision_tower.blocks.36.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
731
+ "model.vision_tower.vision_tower.blocks.36.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
732
+ "model.vision_tower.vision_tower.blocks.36.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
733
+ "model.vision_tower.vision_tower.blocks.36.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
734
+ "model.vision_tower.vision_tower.blocks.36.norm1.bias": "pytorch_model-00004-of-00004.bin",
735
+ "model.vision_tower.vision_tower.blocks.36.norm1.weight": "pytorch_model-00004-of-00004.bin",
736
+ "model.vision_tower.vision_tower.blocks.36.norm2.bias": "pytorch_model-00004-of-00004.bin",
737
+ "model.vision_tower.vision_tower.blocks.36.norm2.weight": "pytorch_model-00004-of-00004.bin",
738
+ "model.vision_tower.vision_tower.blocks.37.attn.proj.bias": "pytorch_model-00004-of-00004.bin",
739
+ "model.vision_tower.vision_tower.blocks.37.attn.proj.weight": "pytorch_model-00004-of-00004.bin",
740
+ "model.vision_tower.vision_tower.blocks.37.attn.q_bias": "pytorch_model-00004-of-00004.bin",
741
+ "model.vision_tower.vision_tower.blocks.37.attn.qkv.weight": "pytorch_model-00004-of-00004.bin",
742
+ "model.vision_tower.vision_tower.blocks.37.attn.v_bias": "pytorch_model-00004-of-00004.bin",
743
+ "model.vision_tower.vision_tower.blocks.37.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
744
+ "model.vision_tower.vision_tower.blocks.37.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
745
+ "model.vision_tower.vision_tower.blocks.37.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
746
+ "model.vision_tower.vision_tower.blocks.37.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
747
+ "model.vision_tower.vision_tower.blocks.37.norm1.bias": "pytorch_model-00004-of-00004.bin",
748
+ "model.vision_tower.vision_tower.blocks.37.norm1.weight": "pytorch_model-00004-of-00004.bin",
749
+ "model.vision_tower.vision_tower.blocks.37.norm2.bias": "pytorch_model-00004-of-00004.bin",
750
+ "model.vision_tower.vision_tower.blocks.37.norm2.weight": "pytorch_model-00004-of-00004.bin",
751
+ "model.vision_tower.vision_tower.blocks.38.attn.proj.bias": "pytorch_model-00004-of-00004.bin",
752
+ "model.vision_tower.vision_tower.blocks.38.attn.proj.weight": "pytorch_model-00004-of-00004.bin",
753
+ "model.vision_tower.vision_tower.blocks.38.attn.q_bias": "pytorch_model-00004-of-00004.bin",
754
+ "model.vision_tower.vision_tower.blocks.38.attn.qkv.weight": "pytorch_model-00004-of-00004.bin",
755
+ "model.vision_tower.vision_tower.blocks.38.attn.v_bias": "pytorch_model-00004-of-00004.bin",
756
+ "model.vision_tower.vision_tower.blocks.38.mlp.fc1.bias": "pytorch_model-00004-of-00004.bin",
757
+ "model.vision_tower.vision_tower.blocks.38.mlp.fc1.weight": "pytorch_model-00004-of-00004.bin",
758
+ "model.vision_tower.vision_tower.blocks.38.mlp.fc2.bias": "pytorch_model-00004-of-00004.bin",
759
+ "model.vision_tower.vision_tower.blocks.38.mlp.fc2.weight": "pytorch_model-00004-of-00004.bin",
760
+ "model.vision_tower.vision_tower.blocks.38.norm1.bias": "pytorch_model-00004-of-00004.bin",
761
+ "model.vision_tower.vision_tower.blocks.38.norm1.weight": "pytorch_model-00004-of-00004.bin",
762
+ "model.vision_tower.vision_tower.blocks.38.norm2.bias": "pytorch_model-00004-of-00004.bin",
763
+ "model.vision_tower.vision_tower.blocks.38.norm2.weight": "pytorch_model-00004-of-00004.bin",
764
+ "model.vision_tower.vision_tower.blocks.4.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
765
+ "model.vision_tower.vision_tower.blocks.4.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
766
+ "model.vision_tower.vision_tower.blocks.4.attn.q_bias": "pytorch_model-00003-of-00004.bin",
767
+ "model.vision_tower.vision_tower.blocks.4.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
768
+ "model.vision_tower.vision_tower.blocks.4.attn.v_bias": "pytorch_model-00003-of-00004.bin",
769
+ "model.vision_tower.vision_tower.blocks.4.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
770
+ "model.vision_tower.vision_tower.blocks.4.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
771
+ "model.vision_tower.vision_tower.blocks.4.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
772
+ "model.vision_tower.vision_tower.blocks.4.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
773
+ "model.vision_tower.vision_tower.blocks.4.norm1.bias": "pytorch_model-00003-of-00004.bin",
774
+ "model.vision_tower.vision_tower.blocks.4.norm1.weight": "pytorch_model-00003-of-00004.bin",
775
+ "model.vision_tower.vision_tower.blocks.4.norm2.bias": "pytorch_model-00003-of-00004.bin",
776
+ "model.vision_tower.vision_tower.blocks.4.norm2.weight": "pytorch_model-00003-of-00004.bin",
777
+ "model.vision_tower.vision_tower.blocks.5.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
778
+ "model.vision_tower.vision_tower.blocks.5.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
779
+ "model.vision_tower.vision_tower.blocks.5.attn.q_bias": "pytorch_model-00003-of-00004.bin",
780
+ "model.vision_tower.vision_tower.blocks.5.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
781
+ "model.vision_tower.vision_tower.blocks.5.attn.v_bias": "pytorch_model-00003-of-00004.bin",
782
+ "model.vision_tower.vision_tower.blocks.5.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
783
+ "model.vision_tower.vision_tower.blocks.5.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
784
+ "model.vision_tower.vision_tower.blocks.5.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
785
+ "model.vision_tower.vision_tower.blocks.5.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
786
+ "model.vision_tower.vision_tower.blocks.5.norm1.bias": "pytorch_model-00003-of-00004.bin",
787
+ "model.vision_tower.vision_tower.blocks.5.norm1.weight": "pytorch_model-00003-of-00004.bin",
788
+ "model.vision_tower.vision_tower.blocks.5.norm2.bias": "pytorch_model-00003-of-00004.bin",
789
+ "model.vision_tower.vision_tower.blocks.5.norm2.weight": "pytorch_model-00003-of-00004.bin",
790
+ "model.vision_tower.vision_tower.blocks.6.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
791
+ "model.vision_tower.vision_tower.blocks.6.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
792
+ "model.vision_tower.vision_tower.blocks.6.attn.q_bias": "pytorch_model-00003-of-00004.bin",
793
+ "model.vision_tower.vision_tower.blocks.6.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
794
+ "model.vision_tower.vision_tower.blocks.6.attn.v_bias": "pytorch_model-00003-of-00004.bin",
795
+ "model.vision_tower.vision_tower.blocks.6.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
796
+ "model.vision_tower.vision_tower.blocks.6.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
797
+ "model.vision_tower.vision_tower.blocks.6.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
798
+ "model.vision_tower.vision_tower.blocks.6.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
799
+ "model.vision_tower.vision_tower.blocks.6.norm1.bias": "pytorch_model-00003-of-00004.bin",
800
+ "model.vision_tower.vision_tower.blocks.6.norm1.weight": "pytorch_model-00003-of-00004.bin",
801
+ "model.vision_tower.vision_tower.blocks.6.norm2.bias": "pytorch_model-00003-of-00004.bin",
802
+ "model.vision_tower.vision_tower.blocks.6.norm2.weight": "pytorch_model-00003-of-00004.bin",
803
+ "model.vision_tower.vision_tower.blocks.7.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
804
+ "model.vision_tower.vision_tower.blocks.7.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
805
+ "model.vision_tower.vision_tower.blocks.7.attn.q_bias": "pytorch_model-00003-of-00004.bin",
806
+ "model.vision_tower.vision_tower.blocks.7.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
807
+ "model.vision_tower.vision_tower.blocks.7.attn.v_bias": "pytorch_model-00003-of-00004.bin",
808
+ "model.vision_tower.vision_tower.blocks.7.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
809
+ "model.vision_tower.vision_tower.blocks.7.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
810
+ "model.vision_tower.vision_tower.blocks.7.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
811
+ "model.vision_tower.vision_tower.blocks.7.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
812
+ "model.vision_tower.vision_tower.blocks.7.norm1.bias": "pytorch_model-00003-of-00004.bin",
813
+ "model.vision_tower.vision_tower.blocks.7.norm1.weight": "pytorch_model-00003-of-00004.bin",
814
+ "model.vision_tower.vision_tower.blocks.7.norm2.bias": "pytorch_model-00003-of-00004.bin",
815
+ "model.vision_tower.vision_tower.blocks.7.norm2.weight": "pytorch_model-00003-of-00004.bin",
816
+ "model.vision_tower.vision_tower.blocks.8.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
817
+ "model.vision_tower.vision_tower.blocks.8.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
818
+ "model.vision_tower.vision_tower.blocks.8.attn.q_bias": "pytorch_model-00003-of-00004.bin",
819
+ "model.vision_tower.vision_tower.blocks.8.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
820
+ "model.vision_tower.vision_tower.blocks.8.attn.v_bias": "pytorch_model-00003-of-00004.bin",
821
+ "model.vision_tower.vision_tower.blocks.8.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
822
+ "model.vision_tower.vision_tower.blocks.8.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
823
+ "model.vision_tower.vision_tower.blocks.8.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
824
+ "model.vision_tower.vision_tower.blocks.8.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
825
+ "model.vision_tower.vision_tower.blocks.8.norm1.bias": "pytorch_model-00003-of-00004.bin",
826
+ "model.vision_tower.vision_tower.blocks.8.norm1.weight": "pytorch_model-00003-of-00004.bin",
827
+ "model.vision_tower.vision_tower.blocks.8.norm2.bias": "pytorch_model-00003-of-00004.bin",
828
+ "model.vision_tower.vision_tower.blocks.8.norm2.weight": "pytorch_model-00003-of-00004.bin",
829
+ "model.vision_tower.vision_tower.blocks.9.attn.proj.bias": "pytorch_model-00003-of-00004.bin",
830
+ "model.vision_tower.vision_tower.blocks.9.attn.proj.weight": "pytorch_model-00003-of-00004.bin",
831
+ "model.vision_tower.vision_tower.blocks.9.attn.q_bias": "pytorch_model-00003-of-00004.bin",
832
+ "model.vision_tower.vision_tower.blocks.9.attn.qkv.weight": "pytorch_model-00003-of-00004.bin",
833
+ "model.vision_tower.vision_tower.blocks.9.attn.v_bias": "pytorch_model-00003-of-00004.bin",
834
+ "model.vision_tower.vision_tower.blocks.9.mlp.fc1.bias": "pytorch_model-00003-of-00004.bin",
835
+ "model.vision_tower.vision_tower.blocks.9.mlp.fc1.weight": "pytorch_model-00003-of-00004.bin",
836
+ "model.vision_tower.vision_tower.blocks.9.mlp.fc2.bias": "pytorch_model-00003-of-00004.bin",
837
+ "model.vision_tower.vision_tower.blocks.9.mlp.fc2.weight": "pytorch_model-00003-of-00004.bin",
838
+ "model.vision_tower.vision_tower.blocks.9.norm1.bias": "pytorch_model-00003-of-00004.bin",
839
+ "model.vision_tower.vision_tower.blocks.9.norm1.weight": "pytorch_model-00003-of-00004.bin",
840
+ "model.vision_tower.vision_tower.blocks.9.norm2.bias": "pytorch_model-00003-of-00004.bin",
841
+ "model.vision_tower.vision_tower.blocks.9.norm2.weight": "pytorch_model-00003-of-00004.bin",
842
+ "model.vision_tower.vision_tower.cls_token": "pytorch_model-00003-of-00004.bin",
843
+ "model.vision_tower.vision_tower.patch_embed.proj.bias": "pytorch_model-00003-of-00004.bin",
844
+ "model.vision_tower.vision_tower.patch_embed.proj.weight": "pytorch_model-00003-of-00004.bin",
845
+ "model.vision_tower.vision_tower.pos_embed": "pytorch_model-00003-of-00004.bin"
846
+ }
847
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 4096,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }