Tess-v2.5-Qwen2-72B / Evals /Tess-v2.5-Qwen2-72B-agieval_nous.json
migtissera's picture
Upload 3 files
9099977 verified
raw
history blame
21 kB
{
"results": {
"agieval_nous": {
"acc_norm,none": 0.5357423409269442,
"acc_norm_stderr,none": 0.00952110343229611,
"acc,none": 0.6233307148468186,
"acc_stderr,none": 0.009151821236525831,
"alias": "agieval_nous"
},
"agieval_aqua_rat": {
"acc,none": 0.5511811023622047,
"acc_stderr,none": 0.03126961011656295,
"acc_norm,none": 0.5118110236220472,
"acc_norm_stderr,none": 0.031425959141896394,
"alias": " - agieval_aqua_rat"
},
"agieval_logiqa_en": {
"acc,none": 0.554531490015361,
"acc_stderr,none": 0.019494627133439985,
"acc_norm,none": 0.46236559139784944,
"acc_norm_stderr,none": 0.019555980839597826,
"alias": " - agieval_logiqa_en"
},
"agieval_lsat_ar": {
"acc,none": 0.26956521739130435,
"acc_stderr,none": 0.02932276422894952,
"acc_norm,none": 0.2565217391304348,
"acc_norm_stderr,none": 0.028858814315305643,
"alias": " - agieval_lsat_ar"
},
"agieval_lsat_lr": {
"acc,none": 0.7,
"acc_stderr,none": 0.020311909655921973,
"acc_norm,none": 0.5764705882352941,
"acc_norm_stderr,none": 0.021901379648792133,
"alias": " - agieval_lsat_lr"
},
"agieval_lsat_rc": {
"acc,none": 0.7881040892193308,
"acc_stderr,none": 0.02496236224822418,
"acc_norm,none": 0.6765799256505576,
"acc_norm_stderr,none": 0.028574302844503813,
"alias": " - agieval_lsat_rc"
},
"agieval_sat_en": {
"acc,none": 0.8689320388349514,
"acc_stderr,none": 0.02357025313368066,
"acc_norm,none": 0.8446601941747572,
"acc_norm_stderr,none": 0.02529912276040303,
"alias": " - agieval_sat_en"
},
"agieval_sat_en_without_passage": {
"acc,none": 0.616504854368932,
"acc_stderr,none": 0.033960279445866416,
"acc_norm,none": 0.5194174757281553,
"acc_norm_stderr,none": 0.03489517135066013,
"alias": " - agieval_sat_en_without_passage"
},
"agieval_sat_math": {
"acc,none": 0.6772727272727272,
"acc_stderr,none": 0.03159203270502094,
"acc_norm,none": 0.5318181818181819,
"acc_norm_stderr,none": 0.03371838809107287,
"alias": " - agieval_sat_math"
}
},
"groups": {
"agieval_nous": {
"acc_norm,none": 0.5357423409269442,
"acc_norm_stderr,none": 0.00952110343229611,
"acc,none": 0.6233307148468186,
"acc_stderr,none": 0.009151821236525831,
"alias": "agieval_nous"
}
},
"group_subtasks": {
"agieval_nous": [
"agieval_sat_en",
"agieval_lsat_ar",
"agieval_sat_en_without_passage",
"agieval_aqua_rat",
"agieval_logiqa_en",
"agieval_sat_math",
"agieval_lsat_rc",
"agieval_lsat_lr"
]
},
"configs": {
"agieval_aqua_rat": {
"task": "agieval_aqua_rat",
"group": [
"agieval",
"agieval_en",
"agieval_nous"
],
"dataset_path": "hails/agieval-aqua-rat",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_logiqa_en": {
"task": "agieval_logiqa_en",
"group": [
"agieval",
"agieval_nous",
"agieval_en"
],
"dataset_path": "hails/agieval-logiqa-en",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_ar": {
"task": "agieval_lsat_ar",
"group": [
"agieval",
"agieval_nous",
"agieval_en"
],
"dataset_path": "hails/agieval-lsat-ar",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_lr": {
"task": "agieval_lsat_lr",
"group": [
"agieval",
"agieval_nous",
"agieval_en"
],
"dataset_path": "hails/agieval-lsat-lr",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_rc": {
"task": "agieval_lsat_rc",
"group": [
"agieval",
"agieval_nous",
"agieval_en"
],
"dataset_path": "hails/agieval-lsat-rc",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_en": {
"task": "agieval_sat_en",
"group": [
"agieval",
"agieval_nous",
"agieval_en"
],
"dataset_path": "hails/agieval-sat-en",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_en_without_passage": {
"task": "agieval_sat_en_without_passage",
"group": [
"agieval",
"agieval_nous",
"agieval_en"
],
"dataset_path": "hails/agieval-sat-en-without-passage",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_math": {
"task": "agieval_sat_math",
"group": [
"agieval",
"agieval_nous",
"agieval_en"
],
"dataset_path": "hails/agieval-sat-math",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
}
},
"versions": {
"agieval_aqua_rat": 1.0,
"agieval_logiqa_en": 1.0,
"agieval_lsat_ar": 1.0,
"agieval_lsat_lr": 1.0,
"agieval_lsat_rc": 1.0,
"agieval_sat_en": 1.0,
"agieval_sat_en_without_passage": 1.0,
"agieval_sat_math": 1.0
},
"n-shot": {
"agieval_aqua_rat": 0,
"agieval_logiqa_en": 0,
"agieval_lsat_ar": 0,
"agieval_lsat_lr": 0,
"agieval_lsat_rc": 0,
"agieval_nous": 0,
"agieval_sat_en": 0,
"agieval_sat_en_without_passage": 0,
"agieval_sat_math": 0
},
"higher_is_better": {
"agieval_aqua_rat": {
"acc": true,
"acc_norm": true
},
"agieval_logiqa_en": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_ar": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_lr": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_rc": {
"acc": true,
"acc_norm": true
},
"agieval_nous": {
"acc": true,
"acc_norm": true
},
"agieval_sat_en": {
"acc": true,
"acc_norm": true
},
"agieval_sat_en_without_passage": {
"acc": true,
"acc_norm": true
},
"agieval_sat_math": {
"acc": true,
"acc_norm": true
}
},
"n-samples": {
"agieval_sat_en": {
"original": 206,
"effective": 206
},
"agieval_lsat_ar": {
"original": 230,
"effective": 230
},
"agieval_sat_en_without_passage": {
"original": 206,
"effective": 206
},
"agieval_aqua_rat": {
"original": 254,
"effective": 254
},
"agieval_logiqa_en": {
"original": 651,
"effective": 651
},
"agieval_sat_math": {
"original": 220,
"effective": 220
},
"agieval_lsat_rc": {
"original": 269,
"effective": 269
},
"agieval_lsat_lr": {
"original": 510,
"effective": 510
}
},
"config": {
"model": "hf",
"model_args": "pretrained=/home/migel/Tess-v2.5-qwen2-72B-safetensors,parallelize=True",
"model_num_parameters": 72706203648,
"model_dtype": "torch.float16",
"model_revision": "main",
"model_sha": "",
"batch_size": "16",
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "b3e4c49a",
"date": 1718163625.5715299,
"pretty_env_info": "PyTorch version: 2.3.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 20.04.6 LTS (x86_64)\nGCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.31\n\nPython version: 3.10.14 (main, Apr 6 2024, 18:45:05) [GCC 9.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1050-azure-x86_64-with-glibc2.31\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\nGPU 2: NVIDIA A100 80GB PCIe\nGPU 3: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 530.30.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nByte Order: Little Endian\nAddress sizes: 48 bits physical, 48 bits virtual\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nNUMA node(s): 4\nVendor ID: AuthenticAMD\nCPU family: 25\nModel: 1\nModel name: AMD EPYC 7V13 64-Core Processor\nStepping: 1\nCPU MHz: 2445.435\nBogoMIPS: 4890.87\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB\nL1i cache: 3 MiB\nL2 cache: 48 MiB\nL3 cache: 384 MiB\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.3.0\n[pip3] triton==2.3.0\n[conda] magma-cuda117 2.6.1 1 pytorch\n[conda] mkl 2022.2.1 pypi_0 pypi\n[conda] mkl-include 2022.2.1 pypi_0 pypi\n[conda] numpy 1.24.4 pypi_0 pypi\n[conda] pytorch-lightning 1.9.5 pypi_0 pypi\n[conda] torch 2.0.1 pypi_0 pypi\n[conda] torch-nebula 0.16.10 pypi_0 pypi\n[conda] torch-ort 1.17.0 pypi_0 pypi\n[conda] torchaudio 2.0.2+cu117 pypi_0 pypi\n[conda] torchdata 0.6.1 pypi_0 pypi\n[conda] torchmetrics 1.2.0 pypi_0 pypi\n[conda] torchsnapshot 0.1.0 pypi_0 pypi\n[conda] torchvision 0.15.2+cu117 pypi_0 pypi\n[conda] triton 2.0.0 pypi_0 pypi",
"transformers_version": "4.41.1",
"upper_git_hash": null,
"task_hashes": {},
"model_source": "hf",
"model_name": "/home/migel/Tess-v2.5-qwen2-72B-safetensors",
"model_name_sanitized": "__home__migel__Tess-v2.5-qwen2-72B-safetensors",
"system_instruction": null,
"system_instruction_sha": null,
"chat_template": null,
"chat_template_sha": null,
"start_time": 377200.61189737,
"end_time": 380116.891366629,
"total_evaluation_time_seconds": "2916.279469258967"
}