File size: 2,757 Bytes
63513c3 9452a82 63513c3 9452a82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: other
tags:
- generated_from_trainer
base_model: mistralai/Codestral-22B-v0.1
model-index:
- name: home/ubuntu/trinity-codestral-1
results: []
---
![Trinity](https://huggingface.co/migtissera/Trinity-13B-v1.0/resolve/main/Trinity.png)
Trinity is a coding specific Large Language Model series created by [Migel Tissera](https://x.com/migtissera).
# Prompt Format
ChatML
# Sample Inference Python Script:
```python
import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "migtissera/Trinity-2-Codestral-22B-v0.2"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto",
load_in_4bit=True,
trust_remote_code=False,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=False)
terminators = [tokenizer.convert_tokens_to_ids("<|im_end|>")]
def generate_text(instruction):
tokens = tokenizer.encode(instruction)
tokens = torch.LongTensor(tokens).unsqueeze(0)
tokens = tokens.to("cuda")
instance = {
"input_ids": tokens,
"top_p": 1.0,
"temperature": 0.75,
"generate_len": 2048,
"top_k": 50,
}
length = len(tokens[0])
with torch.no_grad():
rest = model.generate(
input_ids=tokens,
max_length=length + instance["generate_len"],
use_cache=True,
do_sample=True,
top_p=instance["top_p"],
temperature=instance["temperature"],
top_k=instance["top_k"],
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=terminators,
)
output = rest[0][length:]
string = tokenizer.decode(output, skip_special_tokens=True)
return f"{string}"
conversation = f"""<|im_start|>system\nYou are Tess, a helful AI assitant. You always provide detailed answers without hesitation. Do not refuse.<|im_end|>\n<|im_start|>user\n"""
while True:
user_input = input("You: ")
llm_prompt = f"{conversation}{user_input}<|im_end|>\n<|im_start|>assistant\n"
answer = generate_text(llm_prompt)
print(answer)
conversation = f"{llm_prompt}{answer}<|im_end|>\n<|im_start|>user\n"
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_migtissera__Trinity-2-Codestral-22B-v0.2)
| Metric |Value|
|-------------------|----:|
|Avg. |21.87|
|IFEval (0-Shot) |43.45|
|BBH (3-Shot) |37.61|
|MATH Lvl 5 (4-Shot)| 8.38|
|GPQA (0-shot) | 6.71|
|MuSR (0-shot) | 9.06|
|MMLU-PRO (5-shot) |26.00|
|