|
import torch |
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel |
|
import time |
|
|
|
class GPT2Assistant: |
|
def __init__(self, model_dir): |
|
self.model = GPT2LMHeadModel.from_pretrained(model_dir) |
|
self.tokenizer = GPT2Tokenizer.from_pretrained(model_dir) |
|
|
|
def generate_answer(self, prompt, max_length=1024): |
|
input_ids = self.tokenizer.encode(prompt, return_tensors="pt") |
|
if self.tokenizer.pad_token_id is None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
attention_mask = (input_ids != self.tokenizer.pad_token_id).long() |
|
output = self.model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=2, |
|
do_sample=True, |
|
top_k=50, |
|
top_p=0.95, |
|
temperature=0.70 |
|
) |
|
|
|
answer = self.tokenizer.decode(output[0], skip_special_tokens=True) |
|
return answer[len(prompt):] |
|
|
|
def query(self, prompt): |
|
generated_answer = self.generate_answer(prompt) |
|
return generated_answer |
|
|
|
def main(): |
|
start_time = time.time() |
|
|
|
model_output_dir = "/Users/migueldeguzman/Desktop/gpt2xl_algos/RLLMv10/v8-aterasu/" |
|
assistant = GPT2Assistant(model_output_dir) |
|
|
|
num_iterations = 50 |
|
prompt = input(f"Enter your question to ask the model {num_iterations} times: ") |
|
|
|
for i in range(num_iterations): |
|
print(f"Answering question {i + 1}/{num_iterations}...") |
|
response = assistant.query(prompt) |
|
print(f"Response {i + 1}: {response}\n") |
|
|
|
end_time = time.time() |
|
elapsed_time = (end_time - start_time) / 60 |
|
print(f"Time-stamp: {elapsed_time:.2f} minutes") |
|
|
|
end_time = time.time() |
|
elapsed_time = (end_time - start_time) / 60 |
|
print(f"Time taken to complete the task: {elapsed_time:.2f} minutes") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|