{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fec5eb0aa00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686498469881797132, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKaFFT4toGi/wFBVPSBYbT/iiWU/mWAuPslj9z7pyXC+9yjePr20hj9WKGE/BVcQP5ubHT/eLKK/bP0sPOHok7+tlTM/u5wMv9cHQz5NzZM/OOD1PSF7WD9+nCI+ckgOwMvijL8r0fY+YxvfPljugL8ME00+gkSFv4d7RL3/BVk/lGJ3v2iiWD+9loQ/O5JAv6TASj4KHm2+OSECPwTeb78FqYu9GIC3P3Gr877pjsM//meHP6pR2T8X0F4/AZ4Pv1D5zL4mky6/9iKlPtIAGj/L4oy/K9H2PgnfEsDBJn4/Vmwgvu+MjL9/1MK9wemaP0Oknr93cZk+3MzxPndqL780hS8/xiaZPzZ8bT4lfoy/ociLPf6+zD8jjZA+VgMLQL+ABT+52xlAZqA+PwcBqb/hdIq+xQAlv1hW6z4IbVM/y+KMvyvR9j4J3xLAwSZ+P0cmQD/7G04+QGXPPpoZkT9W3GY/1cvYP+0Fej9koqi/tGfEvVX+1L8zH5M+/++SPkUHhj9wQEq/aTDhPiIvrr8ux8k/h08pvy5k0T1Jw0m/WXJYv+PCIcCw45Y/w8cvv8vijL8r0fY+YxvfPsEmfj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABz6S+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzJLoPQAAAADos9+/AAAAAJlOnT0AAAAASoXpPwAAAAB8CzY9AAAAAEvp+D8AAAAAXoAnPQAAAABiiuC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7sGhNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDPGmz0AAAAAEt/4vwAAAAAD2UY9AAAAAEC/+j8AAAAAA91UvQAAAADgN+U/AAAAAOpQC74AAAAAKnX8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIQsCjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAwdpg9AAAAAALy978AAAAA57yMPAAAAACfOPE/AAAAAExoczwAAAAAUwP1PwAAAAC2Ywq+AAAAAKYW7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFmhe2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAp/gCPQAAAABo1/O/AAAAAAPu170AAAAAT9niPwAAAAARyKA9AAAAANwl3j8AAAAAHmcZPQAAAADiPgHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKGvJtj0+TyMAWyUTegDjAF0lEdAs6Bi8kD6nHV9lChoBkdAodFuQyRB/2gHTegDaAhHQLOg+KwY+B91fZQoaAZHQKL3/1SwW31oB03oA2gIR0CzofvSH/LldX2UKGgGR0CiW5m0u14PaAdN6ANoCEdAs6f2yAxzrHV9lChoBkdAoaK45HVf/mgHTegDaAhHQLOpVcawUxp1fZQoaAZHQKQC/Egntv5oB03oA2gIR0CzqetiH6/JdX2UKGgGR0Cd0QHiWE9MaAdN6ANoCEdAs6rpkqc3EXV9lChoBkdAoswyde6ZpmgHTegDaAhHQLOvGrleWv91fZQoaAZHQJux9Qzk6tFoB03oA2gIR0CzsDnoouwpdX2UKGgGR0Ci76aKcd5qaAdN6ANoCEdAs7DMuDjBEnV9lChoBkdAo5Cu6bvw3GgHTegDaAhHQLOxwhqj8DV1fZQoaAZHQKF75TAFgUloB03oA2gIR0Czt22tQsPKdX2UKGgGR0CiQLnuZ1FIaAdN6ANoCEdAs7jgGmk30nV9lChoBkdAoUBtVFQVK2gHTegDaAhHQLO5dU8mrsB1fZQoaAZHQKKF4HmA9V5oB03oA2gIR0CzuntH6MzedX2UKGgGR0Ciu093KSxJaAdN6ANoCEdAs8B8yad+X3V9lChoBkdAogd5J/XoT2gHTegDaAhHQLPBsdcjZ+R1fZQoaAZHQKLuZZIQOFxoB03oA2gIR0CzwkVUZNwjdX2UKGgGR0CjTVA0bcXWaAdN6ANoCEdAs8OvqrzXjHV9lChoBkdAozbmRFI/aGgHTegDaAhHQLPJbo7muDB1fZQoaAZHQKLXG+0PYnRoB03oA2gIR0CzyoetOmBOdX2UKGgGR0CjMBeVkc0caAdN6ANoCEdAs8scYekpJHV9lChoBkdAox8PO4XoDGgHTegDaAhHQLPMGueSSvF1fZQoaAZHQKJk3ulXRw9oB03oA2gIR0Cz0EMv7FbWdX2UKGgGR0CgR67o8p1BaAdN6ANoCEdAs9FqwLVnVXV9lChoBkdAoVpo7xNIsmgHTegDaAhHQLPSDAmiQDF1fZQoaAZHQKEx4htcfNloB03oA2gIR0Cz03N+b3GodX2UKGgGR0CeI3YekpI+aAdN6ANoCEdAs9kZ6qsEJXV9lChoBkdAodIyBf8dgmgHTegDaAhHQLPaQMuOCGx1fZQoaAZHQKIJmKqGUOdoB03oA2gIR0Cz2tJ3PiT/dX2UKGgGR0CiEz6hxo7FaAdN6ANoCEdAs9vLin5zo3V9lChoBkdAoPxha/yoXWgHTegDaAhHQLPf+rK/2011fZQoaAZHQKB+p3+MqBpoB03oA2gIR0Cz4RjwH7gsdX2UKGgGR0CepPCOWBz4aAdN6ANoCEdAs+GvL9uP3nV9lChoBkdAopGJmZmZmmgHTegDaAhHQLPjEJZntfJ1fZQoaAZHQKHI0SFGoaVoB03oA2gIR0Cz6MjN6gM+dX2UKGgGR0Cilw2HLzPKaAdN6ANoCEdAs+nnCaZx73V9lChoBkdAofJAeHSF5GgHTegDaAhHQLPqfe5WilB1fZQoaAZHQKK5H49HMEBoB03oA2gIR0Cz63cDnvDxdX2UKGgGR0Cg6JtCJGe+aAdN6ANoCEdAs++YxJul43V9lChoBkdAoPuG3nZCfGgHTegDaAhHQLPwucd5prV1fZQoaAZHQKJh6BjFyaNoB03oA2gIR0Cz8Uyup0fYdX2UKGgGR0Chv/rB9Cu2aAdN6ANoCEdAs/KjOLR8dHV9lChoBkdAoXV3Z7HAAWgHTegDaAhHQLP4a4zrNW51fZQoaAZHQJ5FZ2Pkq+doB03oA2gIR0Cz+Yczl90BdX2UKGgGR0CjJ3cv/R3NaAdN6ANoCEdAs/oes6q82HV9lChoBkdAolLq5f+jumgHTegDaAhHQLP7Hsny/bl1fZQoaAZHQJ+01dzGPxRoB03oA2gIR0Cz/0XnuAqedX2UKGgGR0ChyVHR9gF5aAdN6ANoCEdAtABqbjLjgnV9lChoBkdAosAv9R77bmgHTegDaAhHQLQBAfhuO0d1fZQoaAZHQJPIS21D0DloB03oA2gIR0C0AkyksSTRdX2UKGgGR0CitX1tGd7OaAdN6ANoCEdAtAgUCbMHKXV9lChoBkdAomVCj1wo9mgHTegDaAhHQLQJLzbeuV51fZQoaAZHQKJCS0EX+ERoB03oA2gIR0C0CcLjo6jndX2UKGgGR0CiL58aGYa6aAdN6ANoCEdAtAq8cfeUIXV9lChoBkdAlJu9MsYl6mgHTegDaAhHQLQO4YF7laN1fZQoaAZHQKL3M1a4c3loB03oA2gIR0C0D/wCr92pdX2UKGgGR0CisbRLK3d9aAdN6ANoCEdAtBCPk4m1IHV9lChoBkdAof/JHLA572gHTegDaAhHQLQRsmdy1eB1fZQoaAZHQKI7b/4IrvtoB03oA2gIR0C0F6sriEQHdX2UKGgGR0CjPGJIczZZaAdN6ANoCEdAtBjR+6RQrXV9lChoBkdAoygErAgxJ2gHTegDaAhHQLQZaQFs54p1fZQoaAZHQKLYZ9gnc+JoB03oA2gIR0C0GmWiYb84dX2UKGgGR0CkNiB06o2oaAdN6ANoCEdAtB6NzU7SzHV9lChoBkdAo5pLwe/5+GgHTegDaAhHQLQfp3Gn4wh1fZQoaAZHQKH6fabF0gdoB03oA2gIR0C0IDs6mwaBdX2UKGgGR0Ch5Z1hTfixaAdN6ANoCEdAtCFvehwl0HV9lChoBkdAosWsDB/I82gHTegDaAhHQLQnSRYRuj11fZQoaAZHQKKsnkpZwGZoB03oA2gIR0C0KGSqU/wBdX2UKGgGR0CjK77j1f3OaAdN6ANoCEdAtCj4Kneiz3V9lChoBkdAo3Tpkf9xZWgHTegDaAhHQLQp8P8AJcB1fZQoaAZHQKFP9H4oJAtoB03oA2gIR0C0Lh5ha1TjdX2UKGgGR0CVr1Bt1p0waAdN6ANoCEdAtC9AH0K7ZnV9lChoBkdAoeOKamXPaGgHTegDaAhHQLQv0TrE9+x1fZQoaAZHQJV45jy4FzNoB03oA2gIR0C0MNz9sJpndX2UKGgGR0CiXDRcNYr8aAdN6ANoCEdAtDbed4FA3XV9lChoBkdAo1X3IbOu72gHTegDaAhHQLQ3+okRjBl1fZQoaAZHQKK2iH1OCXhoB03oA2gIR0C0OI2XC0ngdX2UKGgGR0CfjIowmE5AaAdN6ANoCEdAtDmDwgDA8HV9lChoBkdAlyFtPpIMB2gHTZsCaAhHQLQ7aRqGlAN1fZQoaAZHQJoQgBq9GqhoB03oA2gIR0C0Psq68QI2dX2UKGgGR0CigwKn3ta7aAdN6ANoCEdAtD9lVKf4AXV9lChoBkdAoOyiK77KrGgHTegDaAhHQLRAX88cMmZ1fZQoaAZHQKNP/iT+vQpoB03oA2gIR0C0QyQoLG70dX2UKGgGR0ChriJZW7voaAdN6ANoCEdAtEei3solU3V9lChoBkdAolZ9a2WpqGgHTegDaAhHQLRIOIjGDL91fZQoaAZHQKKVOLAHmihoB03oA2gIR0C0ST0gGKQ8dX2UKGgGR0Cdsy2SMcZMaAdN6ANoCEdAtEsZyWAwwnV9lChoBkdAognr9KmKqGgHTegDaAhHQLROeV7x/d91fZQoaAZHQKIBoOkLx7RoB03oA2gIR0C0TwyCWeH0dX2UKGgGR0CgxjYCZF5OaAdN6ANoCEdAtFAHd8Aq/nV9lChoBkdAojBHqu8sc2gHTegDaAhHQLRSvZ1mrbR1fZQoaAZHQKKhRydWhh9oB03oA2gIR0C0V0jUd7v5dX2UKGgGR0CiCd1pblijaAdN6ANoCEdAtFfhbr1M/XV9lChoBkdAotYbnied1GgHTegDaAhHQLRY5qASWZ91fZQoaAZHQKMNnKZlWfdoB03oA2gIR0C0WtDifg76dX2UKGgGR0Cg+LRmCiAUaAdN6ANoCEdAtF5E1qFh5XV9lChoBkdAopF3wNLDh2gHTegDaAhHQLRe2b5uZTh1fZQoaAZHQKGVdFUADJVoB03oA2gIR0C0X95OerdWdX2UKGgGR0CiYhUKzAvdaAdN6ANoCEdAtGKUUUO/cnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 125000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}