from transformers import T5ForConditionalGeneration, T5Tokenizer import torch # Load the model and tokenizer t5ag_model = T5ForConditionalGeneration.from_pretrained("miiiciiii/I-Comprehend_ag") t5ag_tokenizer = T5Tokenizer.from_pretrained("miiiciiii/I-Comprehend_ag") def answer_question(question, context): """Generate an answer for a given question and context.""" input_text = f"question: {question} context: {context}" input_ids = t5ag_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True) with torch.no_grad(): output = t5ag_model.generate(input_ids, max_length=512, num_return_sequences=1, max_new_tokens=200) return t5ag_tokenizer.decode(output[0], skip_special_tokens=True) # Example usage question = "What is the location of the Eiffel Tower?" context = "The Eiffel Tower is located in Paris and is one of the most famous landmarks in the world." answer = answer_question(question, context) print("Generated Answer:", answer)