--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - pasha metrics: - precision - recall - f1 - accuracy model-index: - name: pasha results: - task: name: Token Classification type: token-classification dataset: name: pasha type: pasha config: pasha split: test args: pasha metrics: - name: Precision type: precision value: 0.9845822875582646 - name: Recall type: recall value: 0.989193083573487 - name: F1 type: f1 value: 0.9868823000898472 - name: Accuracy type: accuracy value: 0.9908389585342333 --- # pasha This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the pasha dataset. It achieves the following results on the evaluation set: - Loss: 0.0558 - Precision: 0.9846 - Recall: 0.9892 - F1: 0.9869 - Accuracy: 0.9908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.13 | 100 | 0.2662 | 0.9524 | 0.9442 | 0.9483 | 0.9566 | | No log | 4.26 | 200 | 0.1026 | 0.9771 | 0.9820 | 0.9795 | 0.9851 | | No log | 6.38 | 300 | 0.0722 | 0.9821 | 0.9878 | 0.9849 | 0.9884 | | No log | 8.51 | 400 | 0.0608 | 0.9852 | 0.9863 | 0.9858 | 0.9892 | | 0.2962 | 10.64 | 500 | 0.0606 | 0.9849 | 0.9860 | 0.9854 | 0.9889 | | 0.2962 | 12.77 | 600 | 0.0518 | 0.9860 | 0.9910 | 0.9885 | 0.9920 | | 0.2962 | 14.89 | 700 | 0.0526 | 0.9864 | 0.9910 | 0.9887 | 0.9923 | | 0.2962 | 17.02 | 800 | 0.0543 | 0.9849 | 0.9896 | 0.9872 | 0.9913 | | 0.2962 | 19.15 | 900 | 0.0557 | 0.9846 | 0.9888 | 0.9867 | 0.9911 | | 0.0255 | 21.28 | 1000 | 0.0558 | 0.9846 | 0.9892 | 0.9869 | 0.9908 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.2