--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 - precision - recall model-index: - name: multi-minilm-finetuned-amazon-review results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metrics: - name: Accuracy type: accuracy value: 0.527 - name: F1 type: f1 value: 0.5262492788715516 - name: Precision type: precision value: 0.5266767693980432 - name: Recall type: recall value: 0.527 --- # multi-minilm-finetuned-amazon-review This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.1588 - Accuracy: 0.527 - F1: 0.5262 - Precision: 0.5267 - Recall: 0.527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.3182 | 0.4 | 500 | 1.1930 | 0.4684 | 0.4325 | 0.4439 | 0.4684 | | 1.1715 | 0.8 | 1000 | 1.1570 | 0.4782 | 0.4639 | 0.4629 | 0.4782 | | 1.0959 | 1.2 | 1500 | 1.1253 | 0.4976 | 0.4962 | 0.5008 | 0.4976 | | 1.0682 | 1.6 | 2000 | 1.0928 | 0.5128 | 0.5080 | 0.5094 | 0.5128 | | 1.0272 | 2.0 | 2500 | 1.0936 | 0.5144 | 0.5120 | 0.5138 | 0.5144 | | 0.956 | 2.4 | 3000 | 1.1047 | 0.5228 | 0.5179 | 0.5159 | 0.5228 | | 0.9539 | 2.8 | 3500 | 1.0970 | 0.5236 | 0.5211 | 0.5194 | 0.5236 | | 0.9064 | 3.2 | 4000 | 1.1232 | 0.5278 | 0.5238 | 0.5259 | 0.5278 | | 0.8595 | 3.6 | 4500 | 1.1256 | 0.5296 | 0.5286 | 0.5313 | 0.5296 | | 0.8731 | 4.0 | 5000 | 1.1400 | 0.5296 | 0.5238 | 0.5228 | 0.5296 | | 0.7876 | 4.4 | 5500 | 1.1518 | 0.5244 | 0.5271 | 0.5314 | 0.5244 | | 0.7959 | 4.8 | 6000 | 1.1588 | 0.527 | 0.5262 | 0.5267 | 0.527 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3