Starlette!
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,69 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
pipeline_tag: image-classification
|
4 |
+
tags:
|
5 |
+
- aesthetic
|
6 |
---
|
7 |
+
|
8 |
+
# THE INPUT IMAGE MUST HAVE `RGB` CHANNELS. IT WILL NOT WORK WITH `RGBA` CHANNELS!
|
9 |
+
|
10 |
+
## Usage
|
11 |
+
```python
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.optim as optim
|
15 |
+
import torchvision.transforms as transforms
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
class CNN(nn.Module):
|
21 |
+
def __init__(self, hidden_size=512):
|
22 |
+
super(CNN, self).__init__()
|
23 |
+
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
|
24 |
+
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
|
25 |
+
self.fc1 = nn.Linear(32 * 192 * 192, hidden_size)
|
26 |
+
self.fc2 = nn.Linear(hidden_size, 2)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = torch.relu(self.conv1(x))
|
30 |
+
x = torch.max_pool2d(x, kernel_size=2, stride=2)
|
31 |
+
x = torch.relu(self.conv2(x))
|
32 |
+
x = torch.max_pool2d(x, kernel_size=2, stride=2)
|
33 |
+
x = x.view(-1, 32 * 192 * 192)
|
34 |
+
x = torch.relu(self.fc1(x))
|
35 |
+
x = self.fc2(x)
|
36 |
+
return x
|
37 |
+
|
38 |
+
model = CNN().to(device).half()
|
39 |
+
criterion = nn.CrossEntropyLoss()
|
40 |
+
optimizer = optim.Adam(model.parameters(), lr=2.5e-5)
|
41 |
+
|
42 |
+
transform = transforms.Compose([
|
43 |
+
transforms.Resize((768, 768)),
|
44 |
+
transforms.ToTensor(),
|
45 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
46 |
+
])
|
47 |
+
|
48 |
+
def infer(model, image_path):
|
49 |
+
model.eval()
|
50 |
+
image = Image.open(image_path)
|
51 |
+
image = transform(image).unsqueeze(0).to(device).half()
|
52 |
+
with torch.no_grad():
|
53 |
+
output = model(image)
|
54 |
+
predicted_class = torch.argmax(output).item()
|
55 |
+
return predicted_class
|
56 |
+
|
57 |
+
checkpoint = torch.load('half_precision_model_checkpoint.pth')
|
58 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
59 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
60 |
+
epoch = checkpoint['epoch']
|
61 |
+
loss = checkpoint['loss']
|
62 |
+
|
63 |
+
image_path = 'good.jpg'
|
64 |
+
predicted_class = infer(model, image_path)
|
65 |
+
if int(predicted_class) == 0:
|
66 |
+
print('Predicted class: Bad Image')
|
67 |
+
elif int(predicted_class) == 1:
|
68 |
+
print('Predicted class: Good Image')
|
69 |
+
```
|