intent_encoder / handler.py
onisj's picture
Create handler.py
88ef157 verified
from typing import Dict, List, Any
from transformers import pipeline, AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer
import torch
import os
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class EndpointHandler:
def __init__(self, path=""):
self.path = path
try:
self.task = self._determine_task()
except Exception as e:
logger.error(f"Failed to determine task: {str(e)}")
raise
logger.info(f"Initializing model for task: {self.task} at path: {path}")
if self.task == "text-generation":
self.model = AutoModelForCausalLM.from_pretrained(
path,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
self.tokenizer = AutoTokenizer.from_pretrained(path)
self.pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=0 if torch.cuda.is_available() else -1
)
elif self.task == "text-classification":
self.model = AutoModelForSequenceClassification.from_pretrained(
path,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
self.tokenizer = AutoTokenizer.from_pretrained(path)
self.pipeline = pipeline(
"text-classification",
model=self.model,
tokenizer=self.tokenizer,
device=0 if torch.cuda.is_available() else -1
)
elif self.task == "sentence-embedding":
self.model = SentenceTransformer(path)
else:
raise ValueError(f"Unsupported task: {self.task} for model at {path}")
def _determine_task(self):
config_path = os.path.join(self.path, "config.json")
if not os.path.exists(config_path):
logger.error(f"config.json not found in {self.path}")
raise ValueError(f"config.json not found in {self.path}")
try:
config = AutoConfig.from_pretrained(self.path)
model_type = config.model_type if hasattr(config, "model_type") else None
except Exception as e:
logger.error(f"Failed to load config: {str(e)}")
raise ValueError(f"Invalid config.json in {self.path}: {str(e)}")
text_generation_types = ["gpt2"]
text_classification_types = ["bert", "distilbert", "roberta"]
embedding_types = ["bert"]
model_name = self.path.split("/")[-1].lower()
logger.info(f"Model name: {model_name}, Model type: {model_type}")
if model_type in text_generation_types or model_name in ["fine_tuned_gpt2", "merged_distilgpt2"]:
return "text-generation"
elif model_type in text_classification_types or model_name in ["emotion_classifier", "emotion_model", "intent_classifier", "intent_fallback"]:
return "text-classification"
elif model_name in ["intent_encoder", "sentence_transformer"] or "sentence_bert_config.json" in os.listdir(self.path):
return "sentence-embedding"
raise ValueError(f"Could not determine task for model_type: {model_type}, model_name: {model_name}")
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
inputs = data.get("inputs", "")
parameters = data.get("parameters", None)
if not inputs:
logger.warning("No inputs provided")
return [{"error": "No inputs provided"}]
try:
logger.info(f"Processing inputs for task: {self.task}")
if self.task == "text-generation":
result = self.pipeline(inputs, max_length=50, num_return_sequences=1, **(parameters or {}))
return [{"generated_text": item["generated_text"]} for item in result]
elif self.task == "text-classification":
result = self.pipeline(inputs, return_all_scores=True, **(parameters or {}))
return [{"label": item["label"], "score": item["score"]} for sublist in result for item in sublist]
elif self.task == "sentence-embedding":
embeddings = self.model.encode(inputs)
return [{"embeddings": embeddings.tolist()}]
return [{"error": f"Unsupported task: {self.task}"}]
except Exception as e:
logger.error(f"Inference failed: {str(e)}")
return [{"error": f"Inference failed: {str(e)}"}]