File size: 2,268 Bytes
d878be5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: other
base_model: rinna/llama-3-youko-8b
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: sft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sft
This model is a fine-tuned version of [rinna/llama-3-youko-8b](https://huggingface.co/rinna/llama-3-youko-8b) on the data_bricks, the kunishou, the ichikara-004-multi, the ichikara-004-single, the apto_instruct, the apto_dialogue, the oasst_ja and the megagon datasets.
It achieves the following results on the evaluation set:
- Loss: 1.0135
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.1
- num_epochs: 2.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9155 | 0.1433 | 100 | 1.8934 |
| 1.7826 | 0.2865 | 200 | 1.7808 |
| 1.6897 | 0.4298 | 300 | 1.6719 |
| 1.5887 | 0.5731 | 400 | 1.5738 |
| 1.4628 | 0.7163 | 500 | 1.4660 |
| 1.3751 | 0.8596 | 600 | 1.3671 |
| 1.1263 | 1.0029 | 700 | 1.2831 |
| 0.688 | 1.1461 | 800 | 1.2492 |
| 0.6544 | 1.2894 | 900 | 1.1818 |
| 0.6017 | 1.4327 | 1000 | 1.1207 |
| 0.5763 | 1.5759 | 1100 | 1.0708 |
| 0.5599 | 1.7192 | 1200 | 1.0365 |
| 0.5101 | 1.8625 | 1300 | 1.0170 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|