Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +8 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.21 +/- 0.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eee6af474cb168110cf702d174594c7a6b0354327b489fab53efea4260c48ae3
|
3 |
+
size 106937
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f202dae5240>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f202dadf3c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1722675008943594927,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2erhvu8sr7/mUYY/MWqYO19Z4D62OFK+pRCCPt+3+DvRENg+kEBWPw0ipj+rrI2/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlLh/Pj84tL/DatI/JcEEP29JNj/Z75u/SwNOP+8UWj8hWa8+LdeWPyAbpD+KFr+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADZ6uG+7yyvv+ZRhj+HFfg+4ryBv4GG4D8xapg7X1ngPrY4Ur5rrp6/VGLUP5zaor+lEII+37f4O9EQ2D585ug+RzrGuhEdwj6QQFY/DSKmP6usjb+ikrk+dthHP3ai1b+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-0.44124487 -1.3685588 1.0493743 ]\n [ 0.00465133 0.43818185 -0.20529446]\n [ 0.25403324 0.00759028 0.4220033 ]\n [ 0.83692265 1.2979141 -1.1068319 ]]",
|
34 |
+
"desired_goal": "[[ 0.24972755 -1.4079665 1.6438831 ]\n [ 0.51857215 0.712058 -1.2182571 ]\n [ 0.80473775 0.8518819 0.34247687]\n [ 1.1784416 1.2820778 -1.4928753 ]]",
|
35 |
+
"observation": "[[-4.4124487e-01 -1.3685588e+00 1.0493743e+00 4.8453924e-01\n -1.0135767e+00 1.7541047e+00]\n [ 4.6513309e-03 4.3818185e-01 -2.0529446e-01 -1.2396978e+00\n 1.6592507e+00 -1.2722964e+00]\n [ 2.5403324e-01 7.5902785e-03 4.2200330e-01 4.5488346e-01\n -1.5123569e-03 3.7912801e-01]\n [ 8.3692265e-01 1.2979141e+00 -1.1068319e+00 3.6244684e-01\n 7.8064668e-01 -1.6690204e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtikPvgPDkz2ufqo7gbfzPZCjwT3ebwk9Vr6pPYfZ3D14pkw+J0gUvs5F072Gv2Q9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.13980755 0.0721493 0.00520309]\n [ 0.11900235 0.09455025 0.03355395]\n [ 0.08288257 0.10783678 0.19985378]\n [-0.14480649 -0.10316049 0.05584671]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7cjFAE+xGGMAWyUSwKMAXSUR0CgQCDTz/ZNdX2UKGgGR7+0tPHktEofaAdLAmgIR0CgQIqUu+RHdX2UKGgGR7/obmEGqxTsaAdLCmgIR0CgQMnmaH9FdX2UKGgGR7/ci1Aqur6taAdLBGgIR0CgQGDp1RtQdX2UKGgGR7/R23azu4PPaAdLA2gIR0CgQC7zK9wndX2UKGgGR7/TTZxrBTGYaAdLA2gIR0CgQJmV7hNudX2UKGgGR7/BVXFLnLaFaAdLAmgIR0CgQDaSDAaedX2UKGgGR7/L2nKnvUjLaAdLA2gIR0CgQNUI1LrYdX2UKGgGR7/XCZ4Oc2BKaAdLA2gIR0CgQGwRoRI0dX2UKGgGR7/Le3x4IKMOaAdLA2gIR0CgQEMDOkckdX2UKGgGR7/aKsMiKR+0aAdLBWgIR0CgQKy6DoQndX2UKGgGR7/IXsw+MZP3aAdLA2gIR0CgQHh1cMVldX2UKGgGR7/cTTvy9VWCaAdLBGgIR0CgQOTD4xk/dX2UKGgGR7+2j59E1EVnaAdLAmgIR0CgQLMzMzMzdX2UKGgGR7/N8P4EfT1DaAdLA2gIR0CgQIIE0SAZdX2UKGgGR7/XNvOyE+PjaAdLBGgIR0CgQFARTS9edX2UKGgGR7/axtHhCMP0aAdLBGgIR0CgQPRradtmdX2UKGgGR7/PW7voePq+aAdLA2gIR0CgQL/sNUfgdX2UKGgGR7+2oddVvMr3aAdLAmgIR0CgQIusLfDUdX2UKGgGR7/Es0YTCcgAaAdLA2gIR0CgQFz8P4EfdX2UKGgGR7/IoQ4CIUJwaAdLA2gIR0CgQP5ha1TjdX2UKGgGR7/QTkyULUkOaAdLA2gIR0CgQJVtoBaLdX2UKGgGR7/SyGSIP9UCaAdLA2gIR0CgQGleWv8qdX2UKGgGR7+57Uoa1kUcaAdLAmgIR0CgQJ7zCk44dX2UKGgGR7/H+1jRUm2LaAdLA2gIR0CgQQs3hn8LdX2UKGgGR7/QiaAnUlRhaAdLA2gIR0CgQHMmnfl7dX2UKGgGR7/j0xEfDDTCaAdLCGgIR0CgQNzbvgFYdX2UKGgGR7/F5jYqXnhbaAdLA2gIR0CgQKicf/3ndX2UKGgGR7/RchkiD/VBaAdLA2gIR0CgQRfkeZG8dX2UKGgGR7+5JUYKpkwwaAdLAmgIR0CgQObNB4UvdX2UKGgGR7/Zrd30PH1faAdLBGgIR0CgQIOBUaQ4dX2UKGgGR7/fMdtEXtSiaAdLBGgIR0CgQLkFnqVydX2UKGgGR7/WQfIS13MZaAdLBGgIR0CgQSVrhzeXdX2UKGgGR7/TLWZqmCRPaAdLA2gIR0CgQPDiOvMbdX2UKGgGR7/XqjrRjSXuaAdLA2gIR0CgQJCpm29ddX2UKGgGR7/Kw3YL9deIaAdLA2gIR0CgQMZK3/gjdX2UKGgGR7/MEh7mdRR/aAdLA2gIR0CgQP3xe9i+dX2UKGgGR7+wPDpC8e0YaAdLAmgIR0CgQJeM6zVudX2UKGgGR7/YDzAeq7yyaAdLBGgIR0CgQTXzcynDdX2UKGgGR7+5yU9pyp71aAdLAmgIR0CgQMztLL6ldX2UKGgGR7+hubZvkzXSaAdLAWgIR0CgQJrz5GjLdX2UKGgGR7/AzD4xk/bCaAdLAmgIR0CgQT8YqG1ydX2UKGgGR7/NyxRl6JIlaAdLA2gIR0CgQQqEOAiFdX2UKGgGR7++vkiliz9kaAdLAmgIR0CgQKQf6oETdX2UKGgGR7/J8UmD15B1aAdLA2gIR0CgQUjst03gdX2UKGgGR7/IHBUJfICEaAdLA2gIR0CgQRRh2GIsdX2UKGgGR7/Qo0Q9RrJsaAdLA2gIR0CgQK4SYgJUdX2UKGgGR7/cfNA1NxlyaAdLB2gIR0CgQOmNzbN9dX2UKGgGR7/TBkqc3EQ5aAdLA2gIR0CgQVY/3WWhdX2UKGgGR7/MZv1lGwzMaAdLA2gIR0CgQSH2RJVbdX2UKGgGR7/M/dqL0jC6aAdLA2gIR0CgQLuaWom5dX2UKGgGR7+SgwoLG7z1aAdLAWgIR0CgQL8XenAJdX2UKGgGR7/A7UXpGFzuaAdLAmgIR0CgQV2N3np0dX2UKGgGR7/QvKEFnqVyaAdLA2gIR0CgQSwhfShKdX2UKGgGR7/XfP5YYBNmaAdLBGgIR0CgQPfu1F6SdX2UKGgGR7/Qd9Ujs2NvaAdLA2gIR0CgQM+5OJtSdX2UKGgGR7/Kqo60Y0l7aAdLA2gIR0CgQW5VXFLndX2UKGgGR7/K0ZWJaaCuaAdLA2gIR0CgQTz6ab4KdX2UKGgGR7/LpgTh5xBFaAdLA2gIR0CgQQi4BmwrdX2UKGgGR7+0BNmDlHSXaAdLAmgIR0CgQNa/RE4OdX2UKGgGR7/D+QU5+6RRaAdLAmgIR0CgQQ8Xm/34dX2UKGgGR7+2D28IzFdcaAdLAmgIR0CgQN0eEIw/dX2UKGgGR7/d6wMYuTRqaAdLBGgIR0CgQX6NVBD5dX2UKGgGR7/YDMvAXVLBaAdLBGgIR0CgQU2h7E5ydX2UKGgGR7+/DEWIoE0SaAdLAmgIR0CgQRlz+3pfdX2UKGgGR7+2XqqwQlKLaAdLAmgIR0CgQOeI2wV1dX2UKGgGR7/R1q33Hq/uaAdLA2gIR0CgQYkz41xbdX2UKGgGR7/BhcZ9/jKgaAdLAmgIR0CgQO4FA3UAdX2UKGgGR7/OSr5qM3qBaAdLA2gIR0CgQVe8f3evdX2UKGgGR7/bgRbr1M/RaAdLBGgIR0CgQSzwMH8kdX2UKGgGR7/CqXnhbW3CaAdLAmgIR0CgQPsIu5BkdX2UKGgGR7/Yup0fYBeYaAdLBGgIR0CgQZ0Od5IIdX2UKGgGR7/RFfReC04SaAdLA2gIR0CgQWidBjWkdX2UKGgGR7+51Tzd1uBMaAdLAmgIR0CgQTRfOUt7dX2UKGgGR7/gq9oN/e+FaAdLBGgIR0CgQQjzyz5XdX2UKGgGR7/PAZbY9Pk8aAdLA2gIR0CgQUCyyD7JdX2UKGgGR7/Yuwosqaw2aAdLBGgIR0CgQU3M6ij+dX2UKGgGR7/i5wGW2PT5aAdLCGgIR0CgQbxs2vSudX2UKGgGR7/ihVMmF8G+aAdLCGgIR0CgQYfigkC4dX2UKGgGR7/jL3sXzlLfaAdLCGgIR0CgQSsDOkckdX2UKGgGR7/Qz9jwx33YaAdLA2gIR0CgQcll05lwdX2UKGgGR7/K3QUpNKywaAdLA2gIR0CgQZTUqhDgdX2UKGgGR7/RTER8MNMHaAdLBGgIR0CgQWCNsFdLdX2UKGgGR7/H1A7gbZOBaAdLA2gIR0CgQaESElE7dX2UKGgGR7/UwL3K0UoKaAdLA2gIR0CgQWzU7Sy/dX2UKGgGR7/bcbiqABkqaAdLBGgIR0CgQTrYoRZmdX2UKGgGR7/g0t7KJVKgaAdLBWgIR0CgQdyS3b22dX2UKGgGR7+4FbFCLMs6aAdLAmgIR0CgQUFr2xptdX2UKGgGR7/QZ+hGpda/aAdLA2gIR0CgQasVclgMdX2UKGgGR7/SuFHrhR64aAdLA2gIR0CgQXbKifxudX2UKGgGR7+yMPz4DcM3aAdLAmgIR0CgQYCih37ldX2UKGgGR7/QGcnVoYelaAdLA2gIR0CgQU6dtl7MdX2UKGgGR7/NWYnfEXLvaAdLA2gIR0CgQbhBqsU7dX2UKGgGR7/VjynUDuBuaAdLA2gIR0CgQVey7f52dX2UKGgGR7/RVENOM2m6aAdLA2gIR0CgQcRYaHbidX2UKGgGR7/cO+IuXeFdaAdLBWgIR0CgQZM4ku6FdX2UKGgGR7/lBS9/SYw7aAdLCWgIR0CgQf9o371qdX2UKGgGR7/HamoBJZntaAdLA2gIR0CgQWRCIDYAdX2UKGgGR7/JBvaURnOCaAdLA2gIR0CgQc3xvvSddX2UKGgGR7/TV94NZvDQaAdLA2gIR0CgQZyGSIP9dWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWV1AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL3RyaXBoYW4vYW5hY29uZGEzL2VudnMvZHJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvdHJpcGhhbi9hbmFjb25kYTMvZW52cy9kcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:134b2857ec23d6221ea90543991e1eb9f9129c05a05683994ff6f2eb5fa3882d
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aafb4321d276c19a1fe9db0888e5ebe47e7a9ff7c41f1618dec883b2743f5693
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-97-generic-x86_64-with-glibc2.31 # 107~20.04.1-Ubuntu SMP Fri Feb 9 14:20:11 UTC 2024
|
2 |
+
- Python: 3.10.14
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.0
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.28.1
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f202dae5240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f202dadf3c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1722675008943594927, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA2erhvu8sr7/mUYY/MWqYO19Z4D62OFK+pRCCPt+3+DvRENg+kEBWPw0ipj+rrI2/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlLh/Pj84tL/DatI/JcEEP29JNj/Z75u/SwNOP+8UWj8hWa8+LdeWPyAbpD+KFr+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADZ6uG+7yyvv+ZRhj+HFfg+4ryBv4GG4D8xapg7X1ngPrY4Ur5rrp6/VGLUP5zaor+lEII+37f4O9EQ2D585ug+RzrGuhEdwj6QQFY/DSKmP6usjb+ikrk+dthHP3ai1b+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.44124487 -1.3685588 1.0493743 ]\n [ 0.00465133 0.43818185 -0.20529446]\n [ 0.25403324 0.00759028 0.4220033 ]\n [ 0.83692265 1.2979141 -1.1068319 ]]", "desired_goal": "[[ 0.24972755 -1.4079665 1.6438831 ]\n [ 0.51857215 0.712058 -1.2182571 ]\n [ 0.80473775 0.8518819 0.34247687]\n [ 1.1784416 1.2820778 -1.4928753 ]]", "observation": "[[-4.4124487e-01 -1.3685588e+00 1.0493743e+00 4.8453924e-01\n -1.0135767e+00 1.7541047e+00]\n [ 4.6513309e-03 4.3818185e-01 -2.0529446e-01 -1.2396978e+00\n 1.6592507e+00 -1.2722964e+00]\n [ 2.5403324e-01 7.5902785e-03 4.2200330e-01 4.5488346e-01\n -1.5123569e-03 3.7912801e-01]\n [ 8.3692265e-01 1.2979141e+00 -1.1068319e+00 3.6244684e-01\n 7.8064668e-01 -1.6690204e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAtikPvgPDkz2ufqo7gbfzPZCjwT3ebwk9Vr6pPYfZ3D14pkw+J0gUvs5F072Gv2Q9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13980755 0.0721493 0.00520309]\n [ 0.11900235 0.09455025 0.03355395]\n [ 0.08288257 0.10783678 0.19985378]\n [-0.14480649 -0.10316049 0.05584671]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7cjFAE+xGGMAWyUSwKMAXSUR0CgQCDTz/ZNdX2UKGgGR7+0tPHktEofaAdLAmgIR0CgQIqUu+RHdX2UKGgGR7/obmEGqxTsaAdLCmgIR0CgQMnmaH9FdX2UKGgGR7/ci1Aqur6taAdLBGgIR0CgQGDp1RtQdX2UKGgGR7/R23azu4PPaAdLA2gIR0CgQC7zK9wndX2UKGgGR7/TTZxrBTGYaAdLA2gIR0CgQJmV7hNudX2UKGgGR7/BVXFLnLaFaAdLAmgIR0CgQDaSDAaedX2UKGgGR7/L2nKnvUjLaAdLA2gIR0CgQNUI1LrYdX2UKGgGR7/XCZ4Oc2BKaAdLA2gIR0CgQGwRoRI0dX2UKGgGR7/Le3x4IKMOaAdLA2gIR0CgQEMDOkckdX2UKGgGR7/aKsMiKR+0aAdLBWgIR0CgQKy6DoQndX2UKGgGR7/IXsw+MZP3aAdLA2gIR0CgQHh1cMVldX2UKGgGR7/cTTvy9VWCaAdLBGgIR0CgQOTD4xk/dX2UKGgGR7+2j59E1EVnaAdLAmgIR0CgQLMzMzMzdX2UKGgGR7/N8P4EfT1DaAdLA2gIR0CgQIIE0SAZdX2UKGgGR7/XNvOyE+PjaAdLBGgIR0CgQFARTS9edX2UKGgGR7/axtHhCMP0aAdLBGgIR0CgQPRradtmdX2UKGgGR7/PW7voePq+aAdLA2gIR0CgQL/sNUfgdX2UKGgGR7+2oddVvMr3aAdLAmgIR0CgQIusLfDUdX2UKGgGR7/Es0YTCcgAaAdLA2gIR0CgQFz8P4EfdX2UKGgGR7/IoQ4CIUJwaAdLA2gIR0CgQP5ha1TjdX2UKGgGR7/QTkyULUkOaAdLA2gIR0CgQJVtoBaLdX2UKGgGR7/SyGSIP9UCaAdLA2gIR0CgQGleWv8qdX2UKGgGR7+57Uoa1kUcaAdLAmgIR0CgQJ7zCk44dX2UKGgGR7/H+1jRUm2LaAdLA2gIR0CgQQs3hn8LdX2UKGgGR7/QiaAnUlRhaAdLA2gIR0CgQHMmnfl7dX2UKGgGR7/j0xEfDDTCaAdLCGgIR0CgQNzbvgFYdX2UKGgGR7/F5jYqXnhbaAdLA2gIR0CgQKicf/3ndX2UKGgGR7/RchkiD/VBaAdLA2gIR0CgQRfkeZG8dX2UKGgGR7+5JUYKpkwwaAdLAmgIR0CgQObNB4UvdX2UKGgGR7/Zrd30PH1faAdLBGgIR0CgQIOBUaQ4dX2UKGgGR7/fMdtEXtSiaAdLBGgIR0CgQLkFnqVydX2UKGgGR7/WQfIS13MZaAdLBGgIR0CgQSVrhzeXdX2UKGgGR7/TLWZqmCRPaAdLA2gIR0CgQPDiOvMbdX2UKGgGR7/XqjrRjSXuaAdLA2gIR0CgQJCpm29ddX2UKGgGR7/Kw3YL9deIaAdLA2gIR0CgQMZK3/gjdX2UKGgGR7/MEh7mdRR/aAdLA2gIR0CgQP3xe9i+dX2UKGgGR7+wPDpC8e0YaAdLAmgIR0CgQJeM6zVudX2UKGgGR7/YDzAeq7yyaAdLBGgIR0CgQTXzcynDdX2UKGgGR7+5yU9pyp71aAdLAmgIR0CgQMztLL6ldX2UKGgGR7+hubZvkzXSaAdLAWgIR0CgQJrz5GjLdX2UKGgGR7/AzD4xk/bCaAdLAmgIR0CgQT8YqG1ydX2UKGgGR7/NyxRl6JIlaAdLA2gIR0CgQQqEOAiFdX2UKGgGR7++vkiliz9kaAdLAmgIR0CgQKQf6oETdX2UKGgGR7/J8UmD15B1aAdLA2gIR0CgQUjst03gdX2UKGgGR7/IHBUJfICEaAdLA2gIR0CgQRRh2GIsdX2UKGgGR7/Qo0Q9RrJsaAdLA2gIR0CgQK4SYgJUdX2UKGgGR7/cfNA1NxlyaAdLB2gIR0CgQOmNzbN9dX2UKGgGR7/TBkqc3EQ5aAdLA2gIR0CgQVY/3WWhdX2UKGgGR7/MZv1lGwzMaAdLA2gIR0CgQSH2RJVbdX2UKGgGR7/M/dqL0jC6aAdLA2gIR0CgQLuaWom5dX2UKGgGR7+SgwoLG7z1aAdLAWgIR0CgQL8XenAJdX2UKGgGR7/A7UXpGFzuaAdLAmgIR0CgQV2N3np0dX2UKGgGR7/QvKEFnqVyaAdLA2gIR0CgQSwhfShKdX2UKGgGR7/XfP5YYBNmaAdLBGgIR0CgQPfu1F6SdX2UKGgGR7/Qd9Ujs2NvaAdLA2gIR0CgQM+5OJtSdX2UKGgGR7/Kqo60Y0l7aAdLA2gIR0CgQW5VXFLndX2UKGgGR7/K0ZWJaaCuaAdLA2gIR0CgQTz6ab4KdX2UKGgGR7/LpgTh5xBFaAdLA2gIR0CgQQi4BmwrdX2UKGgGR7+0BNmDlHSXaAdLAmgIR0CgQNa/RE4OdX2UKGgGR7/D+QU5+6RRaAdLAmgIR0CgQQ8Xm/34dX2UKGgGR7+2D28IzFdcaAdLAmgIR0CgQN0eEIw/dX2UKGgGR7/d6wMYuTRqaAdLBGgIR0CgQX6NVBD5dX2UKGgGR7/YDMvAXVLBaAdLBGgIR0CgQU2h7E5ydX2UKGgGR7+/DEWIoE0SaAdLAmgIR0CgQRlz+3pfdX2UKGgGR7+2XqqwQlKLaAdLAmgIR0CgQOeI2wV1dX2UKGgGR7/R1q33Hq/uaAdLA2gIR0CgQYkz41xbdX2UKGgGR7/BhcZ9/jKgaAdLAmgIR0CgQO4FA3UAdX2UKGgGR7/OSr5qM3qBaAdLA2gIR0CgQVe8f3evdX2UKGgGR7/bgRbr1M/RaAdLBGgIR0CgQSzwMH8kdX2UKGgGR7/CqXnhbW3CaAdLAmgIR0CgQPsIu5BkdX2UKGgGR7/Yup0fYBeYaAdLBGgIR0CgQZ0Od5IIdX2UKGgGR7/RFfReC04SaAdLA2gIR0CgQWidBjWkdX2UKGgGR7+51Tzd1uBMaAdLAmgIR0CgQTRfOUt7dX2UKGgGR7/gq9oN/e+FaAdLBGgIR0CgQQjzyz5XdX2UKGgGR7/PAZbY9Pk8aAdLA2gIR0CgQUCyyD7JdX2UKGgGR7/Yuwosqaw2aAdLBGgIR0CgQU3M6ij+dX2UKGgGR7/i5wGW2PT5aAdLCGgIR0CgQbxs2vSudX2UKGgGR7/ihVMmF8G+aAdLCGgIR0CgQYfigkC4dX2UKGgGR7/jL3sXzlLfaAdLCGgIR0CgQSsDOkckdX2UKGgGR7/Qz9jwx33YaAdLA2gIR0CgQcll05lwdX2UKGgGR7/K3QUpNKywaAdLA2gIR0CgQZTUqhDgdX2UKGgGR7/RTER8MNMHaAdLBGgIR0CgQWCNsFdLdX2UKGgGR7/H1A7gbZOBaAdLA2gIR0CgQaESElE7dX2UKGgGR7/UwL3K0UoKaAdLA2gIR0CgQWzU7Sy/dX2UKGgGR7/bcbiqABkqaAdLBGgIR0CgQTrYoRZmdX2UKGgGR7/g0t7KJVKgaAdLBWgIR0CgQdyS3b22dX2UKGgGR7+4FbFCLMs6aAdLAmgIR0CgQUFr2xptdX2UKGgGR7/QZ+hGpda/aAdLA2gIR0CgQasVclgMdX2UKGgGR7/SuFHrhR64aAdLA2gIR0CgQXbKifxudX2UKGgGR7+yMPz4DcM3aAdLAmgIR0CgQYCih37ldX2UKGgGR7/QGcnVoYelaAdLA2gIR0CgQU6dtl7MdX2UKGgGR7/NWYnfEXLvaAdLA2gIR0CgQbhBqsU7dX2UKGgGR7/VjynUDuBuaAdLA2gIR0CgQVey7f52dX2UKGgGR7/RVENOM2m6aAdLA2gIR0CgQcRYaHbidX2UKGgGR7/cO+IuXeFdaAdLBWgIR0CgQZM4ku6FdX2UKGgGR7/lBS9/SYw7aAdLCWgIR0CgQf9o371qdX2UKGgGR7/HamoBJZntaAdLA2gIR0CgQWRCIDYAdX2UKGgGR7/JBvaURnOCaAdLA2gIR0CgQc3xvvSddX2UKGgGR7/TV94NZvDQaAdLA2gIR0CgQZyGSIP9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL3RyaXBoYW4vYW5hY29uZGEzL2VudnMvZHJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvdHJpcGhhbi9hbmFjb25kYTMvZW52cy9kcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.0-97-generic-x86_64-with-glibc2.31 # 107~20.04.1-Ubuntu SMP Fri Feb 9 14:20:11 UTC 2024", "Python": "3.10.14", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
|
replay.mp4
ADDED
File without changes
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.21435594446957112, "std_reward": 0.1040039264726015, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-03T17:24:34.075487"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31b23b5cdb82e81246ded914085fa43d7623c8777c443ee1fc6c8f88f42c3a07
|
3 |
+
size 2553
|