{ "name": "root", "gauges": { "Pyramids.Policy.Entropy.mean": { "value": 0.18839456140995026, "min": 0.1832941323518753, "max": 1.436747431755066, "count": 100 }, "Pyramids.Policy.Entropy.sum": { "value": 5663.89404296875, "min": 5475.22900390625, "max": 43585.171875, "count": 100 }, "Pyramids.Step.mean": { "value": 2999968.0, "min": 29952.0, "max": 2999968.0, "count": 100 }, "Pyramids.Step.sum": { "value": 2999968.0, "min": 29952.0, "max": 2999968.0, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.mean": { "value": 0.7405109405517578, "min": -0.10107098519802094, "max": 0.8416146039962769, "count": 100 }, "Pyramids.Policy.ExtrinsicValueEstimate.sum": { "value": 216.22918701171875, "min": -24.35810661315918, "max": 251.64276123046875, "count": 100 }, "Pyramids.Policy.RndValueEstimate.mean": { "value": 0.023741815239191055, "min": -0.01568537764251232, "max": 0.38278132677078247, "count": 100 }, "Pyramids.Policy.RndValueEstimate.sum": { "value": 6.932610034942627, "min": -4.438961982727051, "max": 92.25029754638672, "count": 100 }, "Pyramids.Losses.PolicyLoss.mean": { "value": 0.07276394912748531, "min": 0.06402329153241314, "max": 0.07321170100823067, "count": 100 }, "Pyramids.Losses.PolicyLoss.sum": { "value": 1.0186952877847943, "min": 0.4969161504084424, "max": 1.0923398902220882, "count": 100 }, "Pyramids.Losses.ValueLoss.mean": { "value": 0.01480409925750878, "min": 0.0006634425429559791, "max": 0.018006423953227654, "count": 100 }, "Pyramids.Losses.ValueLoss.sum": { "value": 0.2072573896051229, "min": 0.008624753058427729, "max": 0.25208993534518714, "count": 100 }, "Pyramids.Policy.LearningRate.mean": { "value": 1.5321994892999986e-06, "min": 1.5321994892999986e-06, "max": 0.00029838354339596195, "count": 100 }, "Pyramids.Policy.LearningRate.sum": { "value": 2.145079285019998e-05, "min": 2.145079285019998e-05, "max": 0.0040109539630153665, "count": 100 }, "Pyramids.Policy.Epsilon.mean": { "value": 0.10051070000000002, "min": 0.10051070000000002, "max": 0.19946118095238097, "count": 100 }, "Pyramids.Policy.Epsilon.sum": { "value": 1.4071498000000002, "min": 1.3962282666666668, "max": 2.736984633333334, "count": 100 }, "Pyramids.Policy.Beta.mean": { "value": 6.101892999999996e-05, "min": 6.101892999999996e-05, "max": 0.009946171977142856, "count": 100 }, "Pyramids.Policy.Beta.sum": { "value": 0.0008542650199999995, "min": 0.0008542650199999995, "max": 0.13370476487, "count": 100 }, "Pyramids.Losses.RNDLoss.mean": { "value": 0.007593870162963867, "min": 0.0072589293122291565, "max": 0.5914143919944763, "count": 100 }, "Pyramids.Losses.RNDLoss.sum": { "value": 0.10631418228149414, "min": 0.10162501037120819, "max": 4.1399006843566895, "count": 100 }, "Pyramids.Environment.EpisodeLength.mean": { "value": 248.78813559322035, "min": 218.7537313432836, "max": 999.0, "count": 100 }, "Pyramids.Environment.EpisodeLength.sum": { "value": 29357.0, "min": 15984.0, "max": 33293.0, "count": 100 }, "Pyramids.Environment.CumulativeReward.mean": { "value": 1.7342542247625732, "min": -1.0000000521540642, "max": 1.7787132188677788, "count": 100 }, "Pyramids.Environment.CumulativeReward.sum": { "value": 204.64199852198362, "min": -29.956001602113247, "max": 241.9049977660179, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.mean": { "value": 1.7342542247625732, "min": -1.0000000521540642, "max": 1.7787132188677788, "count": 100 }, "Pyramids.Policy.ExtrinsicReward.sum": { "value": 204.64199852198362, "min": -29.956001602113247, "max": 241.9049977660179, "count": 100 }, "Pyramids.Policy.RndReward.mean": { "value": 0.0195393039597301, "min": 0.016915114604522222, "max": 12.05250214971602, "count": 100 }, "Pyramids.Policy.RndReward.sum": { "value": 2.3056378672481515, "min": 2.1160940441623097, "max": 192.8400343954563, "count": 100 }, "Pyramids.IsTraining.mean": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 }, "Pyramids.IsTraining.sum": { "value": 1.0, "min": 1.0, "max": 1.0, "count": 100 } }, "metadata": { "timer_format_version": "0.1.0", "start_time_seconds": "1722303710", "python_version": "3.10.12 (main, Mar 22 2024, 16:50:05) [GCC 11.4.0]", "command_line_arguments": "/usr/local/bin/mlagents-learn ./config/ppo/PyramidsRND.yaml --env=./training-envs-executables/linux/Pyramids/Pyramids --run-id=Pyramids Training --no-graphics", "mlagents_version": "1.1.0.dev0", "mlagents_envs_version": "1.1.0.dev0", "communication_protocol_version": "1.5.0", "pytorch_version": "2.3.1+cu121", "numpy_version": "1.23.5", "end_time_seconds": "1722315833" }, "total": 12123.303412471001, "count": 1, "self": 0.6947380680012429, "children": { "run_training.setup": { "total": 0.11338866100004452, "count": 1, "self": 0.11338866100004452 }, "TrainerController.start_learning": { "total": 12122.495285742, "count": 1, "self": 8.560820317234175, "children": { "TrainerController._reset_env": { "total": 3.139138100000082, "count": 1, "self": 3.139138100000082 }, "TrainerController.advance": { "total": 12110.685955304765, "count": 194328, "self": 10.048373114923379, "children": { "env_step": { "total": 8469.42242347385, "count": 194328, "self": 7881.9022959216145, "children": { "SubprocessEnvManager._take_step": { "total": 582.2071206779208, "count": 194328, "self": 27.025408596966372, "children": { "TorchPolicy.evaluate": { "total": 555.1817120809544, "count": 187562, "self": 555.1817120809544 } } }, "workers": { "total": 5.313006874314624, "count": 194328, "self": 0.0, "children": { "worker_root": { "total": 12094.24655994405, "count": 194328, "is_parallel": true, "self": 4909.1635515697635, "children": { "run_training.setup": { "total": 0.0, "count": 0, "is_parallel": true, "self": 0.0, "children": { "steps_from_proto": { "total": 0.0035330829998656554, "count": 1, "is_parallel": true, "self": 0.0011351679997915198, "children": { "_process_rank_one_or_two_observation": { "total": 0.0023979150000741356, "count": 8, "is_parallel": true, "self": 0.0023979150000741356 } } }, "UnityEnvironment.step": { "total": 0.08049550999999155, "count": 1, "is_parallel": true, "self": 0.0008801609999409266, "children": { "UnityEnvironment._generate_step_input": { "total": 0.0005924130000494188, "count": 1, "is_parallel": true, "self": 0.0005924130000494188 }, "communicator.exchange": { "total": 0.07690504199990755, "count": 1, "is_parallel": true, "self": 0.07690504199990755 }, "steps_from_proto": { "total": 0.0021178940000936564, "count": 1, "is_parallel": true, "self": 0.00046309599974847515, "children": { "_process_rank_one_or_two_observation": { "total": 0.0016547980003451812, "count": 8, "is_parallel": true, "self": 0.0016547980003451812 } } } } } } }, "UnityEnvironment.step": { "total": 7185.083008374286, "count": 194327, "is_parallel": true, "self": 180.00613906615217, "children": { "UnityEnvironment._generate_step_input": { "total": 102.99308308713194, "count": 194327, "is_parallel": true, "self": 102.99308308713194 }, "communicator.exchange": { "total": 6471.387142303279, "count": 194327, "is_parallel": true, "self": 6471.387142303279 }, "steps_from_proto": { "total": 430.6966439177229, "count": 194327, "is_parallel": true, "self": 97.75706567459792, "children": { "_process_rank_one_or_two_observation": { "total": 332.93957824312497, "count": 1554616, "is_parallel": true, "self": 332.93957824312497 } } } } } } } } } } }, "trainer_advance": { "total": 3631.2151587159915, "count": 194328, "self": 19.1745339693598, "children": { "process_trajectory": { "total": 590.5785973666418, "count": 194328, "self": 589.9334512216421, "children": { "RLTrainer._checkpoint": { "total": 0.6451461449996714, "count": 6, "self": 0.6451461449996714 } } }, "_update_policy": { "total": 3021.4620273799896, "count": 1398, "self": 1208.3197295310329, "children": { "TorchPPOOptimizer.update": { "total": 1813.1422978489568, "count": 68409, "self": 1813.1422978489568 } } } } } } }, "trainer_threads": { "total": 1.0809999366756529e-06, "count": 1, "self": 1.0809999366756529e-06 }, "TrainerController._save_models": { "total": 0.1093709390006552, "count": 1, "self": 0.0027942490014538635, "children": { "RLTrainer._checkpoint": { "total": 0.10657668999920134, "count": 1, "self": 0.10657668999920134 } } } } } } }