--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 지벤 안전화 ZB-176 ZIBEN 절연안전화, 벨크로타입 270 삼진안전 - text: 성인 소가죽 남성 라틴 댄스 신발 교사 코치 댄스화 245_G 타입 황금망또직구야 - text: 아디다스 갤럭시5 런닝화 운동화 워킹화 조깅화 러닝화 신발 FW5717 6. 니짜 로우 (흰검)_265 페라토도 - text: 신사야 소가죽 윙팁 옥스포드 남성구두 SSY3008 브라운_270 신사야 - text: '[프로스펙스 본사] 파워소닉 513 260 (주)엘에스네트웍스' inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.5946474175222807 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 13 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 10.0 | | | 4.0 | | | 7.0 | | | 3.0 | | | 1.0 | | | 9.0 | | | 0.0 | | | 2.0 | | | 6.0 | | | 8.0 | | | 12.0 | | | 11.0 | | | 5.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.5946 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_ac1") # Run inference preds = model("[프로스펙스 본사] 파워소닉 513 260 (주)엘에스네트웍스") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.5062 | 24 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0098 | 1 | 0.4275 | - | | 0.4902 | 50 | 0.3352 | - | | 0.9804 | 100 | 0.2575 | - | | 1.4706 | 150 | 0.1047 | - | | 1.9608 | 200 | 0.0551 | - | | 2.4510 | 250 | 0.0236 | - | | 2.9412 | 300 | 0.0234 | - | | 3.4314 | 350 | 0.0063 | - | | 3.9216 | 400 | 0.0041 | - | | 4.4118 | 450 | 0.0058 | - | | 4.9020 | 500 | 0.0015 | - | | 5.3922 | 550 | 0.0005 | - | | 5.8824 | 600 | 0.0002 | - | | 6.3725 | 650 | 0.0002 | - | | 6.8627 | 700 | 0.0002 | - | | 7.3529 | 750 | 0.0002 | - | | 7.8431 | 800 | 0.0001 | - | | 8.3333 | 850 | 0.0001 | - | | 8.8235 | 900 | 0.0001 | - | | 9.3137 | 950 | 0.0001 | - | | 9.8039 | 1000 | 0.0001 | - | | 10.2941 | 1050 | 0.0001 | - | | 10.7843 | 1100 | 0.0001 | - | | 11.2745 | 1150 | 0.0001 | - | | 11.7647 | 1200 | 0.0001 | - | | 12.2549 | 1250 | 0.0001 | - | | 12.7451 | 1300 | 0.0001 | - | | 13.2353 | 1350 | 0.0001 | - | | 13.7255 | 1400 | 0.0001 | - | | 14.2157 | 1450 | 0.0001 | - | | 14.7059 | 1500 | 0.0001 | - | | 15.1961 | 1550 | 0.0001 | - | | 15.6863 | 1600 | 0.0001 | - | | 16.1765 | 1650 | 0.0001 | - | | 16.6667 | 1700 | 0.0001 | - | | 17.1569 | 1750 | 0.0001 | - | | 17.6471 | 1800 | 0.0001 | - | | 18.1373 | 1850 | 0.0001 | - | | 18.6275 | 1900 | 0.0001 | - | | 19.1176 | 1950 | 0.0 | - | | 19.6078 | 2000 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```