File size: 9,385 Bytes
2a9b113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 얌뚱이 칼라고무밴드 머리끈 헤어밴드 고무줄 유아 아동 여아 어린이집 검정 색 대용량 대핑크30g 얌뚱이
- text: 파티 벨벳 심플 왕리본핀 반묶음핀 30칼라 와인_납작핀대 릴리트리
- text: 넓은 여자 머리띠 윤아 와이드 귀안아픈 면 니트 터번 T-도톰쫀득_핑크 모스블랑
- text: 얼굴소멸 히메컷 가발 앞머리 사이드뱅 옆머리 부분 가발 애교머리 풀뱅 규리 민니 옆2p-라이트브라운 굿모닝리테일
- text: 13cm 빅사이즈 대왕 숱많은 긴 머리 꼬임 올림머리 집게핀 3/ 그라데이션 매트_브라운 블렌디드
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9541466176054345
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 | <ul><li>'(신세계김해점)에트로 프로푸미 헤어밴드 01046 05 1099 ONE SIZE 신세계백화점'</li><li>'Baby scrunchie 3set (White/Beige/Black) 빌라드실크 곱창밴드 미니 실크 스크런치 세트 주식회사 실크랩'</li><li>'간단 헤어밴드 미키마우스 머리띠 왕 리본 남자 캐릭터 플라스틱 반짝이 1-4. 글리터 / 블랙 아이드림'</li></ul> |
| 1.0 | <ul><li>'위즈템 헤어밴드 진주 크리스탈 머리끈 연핑크 파파닐'</li><li>'둥근고무줄 (대용량) 칼라 금 은 천고무줄 벌크 탄성끈 가는줄 /굵은줄 02. 대용량 굵은줄(2.5mmx60M)_금색 마이1004(MY1004)'</li><li>'천연 컬러 고무 끈 고무줄 생활용품 3M 하늘색 제이앤제이웍스'</li></ul> |
| 0.0 | <ul><li>'인모 남자가발 정수리 커버 자연스러운 O형 커버가발 마오_인모14X14 하이윤'</li><li>'얼굴소멸 히메컷 가발 앞머리 사이드뱅 옆머리 부분 히메컷 사이드뱅 옆2p-내츄럴브라운 와우마켓'</li><li>'얼굴소멸 히메컷 가발 앞머리 사이드뱅 옆머리 부분 옆2p-라이트브라운 이지구'</li></ul> |
| 4.0 | <ul><li>'무지 12컬러 심플 리본 바나나핀 핫핑크 하얀당나귀'</li><li>'네임핀/이름핀/네임브로치/어린이집선물/유치원선물 5글자(영어6자~8자)_별_브로치 쭈스타'</li><li>'메탈 셀룰로오스 꼬임 올림머리 집게핀 사각4170_아이스옐로우 엑스엔서'</li></ul> |
| 3.0 | <ul><li>'웨딩 드레스 유니크 베일 셀프 촬영 소품 대형 리본 잡지 모델 패션쇼 장식 액세서리 머리 04.파란 (핸드메이드) 더비공이(TheB02)'</li><li>'슈퍼 요정 흰색 보석 웨딩 헤어 타워 공연 여행 T15-a_선택하세요 아토버디'</li><li>'뿌리볼륨집게3p 건강드림'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9541 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac16")
# Run inference
preds = model("파티 벨벳 심플 왕리본핀 반묶음핀 30칼라 와인_납작핀대 릴리트리")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.956 | 24 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-----:|:----:|:-------------:|:---------------:|
| 0.025 | 1 | 0.4499 | - |
| 1.25 | 50 | 0.2065 | - |
| 2.5 | 100 | 0.0446 | - |
| 3.75 | 150 | 0.0001 | - |
| 5.0 | 200 | 0.0 | - |
| 6.25 | 250 | 0.0001 | - |
| 7.5 | 300 | 0.0 | - |
| 8.75 | 350 | 0.0 | - |
| 10.0 | 400 | 0.0 | - |
| 11.25 | 450 | 0.0 | - |
| 12.5 | 500 | 0.0 | - |
| 13.75 | 550 | 0.0 | - |
| 15.0 | 600 | 0.0 | - |
| 16.25 | 650 | 0.0 | - |
| 17.5 | 700 | 0.0 | - |
| 18.75 | 750 | 0.0 | - |
| 20.0 | 800 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |