Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +258 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: MLB [MLB] 루키 언스트럭쳐 볼캡 24종 택1 203993 선택 20) 3ACP7701N-07ORL_F 위드홀리투
|
14 |
+
- text: 남여공용 기본군모 4컬러 EVE 카키 에브리씽굿
|
15 |
+
- text: 골덴와이어버킷햇(T)7252 브라운 모티브코리아
|
16 |
+
- text: 패션울벙거지97 베이지 디플코리아 (Digital Plus Korea)
|
17 |
+
- text: '[닥스](강남점)DBHE4EL01W2 브라운 체크 면 헌팅캡 신세계백화점'
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: metric
|
31 |
+
value: 0.8489339496048904
|
32 |
+
name: Metric
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 13 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 10.0 | <ul><li>'밀로 [Exclusive] Holiday Signature Ball Cap (20Colors) MINT GRAY 포챌린지'</li><li>'(골라) 남녀공용 (GL)CONTRAST STITCHED CAP (3 COLOR) WW9G3SAAC101 연핑크_FRE '</li><li>'밀로 [Exclusive] Holiday Signature Ball Cap (20Colors) STONE BLACK 포챌린지'</li></ul> |
|
66 |
+
| 4.0 | <ul><li>'꽈배기 비니 모자 두꺼운 골무 털 뜨개 여성 겨울 캡 알파카 남자 커플 니트 주황색_S(아이 32-52 cm) 앤디일레븐'</li><li>'패션모자 방한 남자 니트 후드 겨울 장갑 가을 워머 도톰한 3종세트 기모 블랙 마이클로드'</li><li>'털모자 따뜻한 낚시 모자 아빠 중년남성 노인 겨울 옵션06 에스앤지샵'</li></ul> |
|
67 |
+
| 7.0 | <ul><li>'[하프클럽/구김스]구김스 모자(스포츠/등산/여행/방수) BEST 7종 균일가 763_블랙_D type 하프클럽'</li><li>'캉골 아웃도어 액티비티 버켓 4480 에크루 M AK플라자1관'</li><li>'[벤시몽](신세계센텀점)[23FW] WINTER BUCKET HAT - 2color NAVY_FREE 주식회사 에스에스지닷컴'</li></ul> |
|
68 |
+
| 3.0 | <ul><li>'고탄성 부드러운 메쉬 원단 운동야외활동 스카프 두건 연그레이 드림픽쳐스'</li><li>'[로스코]반다나 스카프 헤어밴드 페이즐리 손수건 OLIVE DRAB_4051/Freesize 패션플러스'</li><li>'페이즐리 반다나 헤어 머리두건 비 손수건 스카프 그린 보물삼'</li></ul> |
|
69 |
+
| 1.0 | <ul><li>'방한모자2종 귀달이 털모자 군밤 스키 용품 트래퍼햇 마스크 캡방한모자 01.불구덩이군방모자 제이케이 아트 갤러리'</li><li>'[MLB] 패딩 트루퍼 귀달이 햇(3AWMPH136-50BKS) 블랙-50BKS/59H 에이케이에스앤디(주) AK플라자 평택점'</li><li>'겨울 곰돌이 후드 귀달이 모자 목돌이 동물 털모자 05.브���운 석진케이 주식회사'</li></ul> |
|
70 |
+
| 9.0 | <ul><li>'스냅백 패션모자 snapback (투톤)그레이오렌지 루나마켓'</li><li>'스냅백 패션모자 snapback 레드 루나마켓'</li><li>'공용 메탈 원포인트 스냅백 뉴욕양키스 (32CP57111-50L) '</li></ul> |
|
71 |
+
| 0.0 | <ul><li>'기본 군모 버킷햇 밀리터리 여자 빈티지군모 모자 남자 버캣햇 블랙 카키 / FREE 체인지비'</li><li>'빈티지 워싱 느낌 영문 레터링 장식 포인트 엣지 군모 그레이 (주)오너클랜'</li><li>'질좋은 군모 모자(차콜/국내생산) 네이비 프리마켓'</li></ul> |
|
72 |
+
| 2.0 | <ul><li>'여자 겨울템 따뜻 극세사 양털곰돌이머리띠 귀마개 A24973_베이지_FREE 세븐제이스(7JS)'</li><li>'양털 곰돌이귀마개 귀도리 뽀글이 귀마개 방한귀마개 목도리 화이트 현성마켓'</li><li>'스타일 더하기-36-꽈배기방한귀마개 핑크 이미연'</li></ul> |
|
73 |
+
| 6.0 | <ul><li>'국내발송 MARITHE FRANCOIS GIRBAUD 마리떼 CABLE KNIT BEANIE blue 1MG23SHG112 ONE SIZE 씨이랩'</li><li>'[매장발송] 마리떼 CLASSIC LOGO BEANIE black OS 와이에스마켓'</li><li>'MARITHE FRANCOIS GIRBAUD CABLE KNIT BEANIE gray 1MG23SHG112 227185 ONE SIZE 원플렉스'</li></ul> |
|
74 |
+
| 8.0 | <ul><li>'비앙카 BIANCA (여성용) 누가/내추럴로고_OS '</li><li>'[롯데백화점]화이트샌즈 공용 UV 프로텍션 바이저 소니아 2.아이보리 롯데백화점_'</li><li>'화이트샌즈 소니아 UV 프로텍션 썬바이저 1종 [00003] 아이보리 현대홈쇼핑'</li></ul> |
|
75 |
+
| 12.0 | <ul><li>'캉골 헌팅캡 울 플렉스핏 504 K0873 심리스 울 507 K0875 3107 남녀공용 베레모 3. K3107ST (Black)_SMALL 어썸우즈'</li><li>'다용도 활용 직원 종업원 단체 패션 모자 헌팅캡 화이트 가온'</li><li>'앨리 카페 바리스타 모자 베이커 캡 마도로스햇[루즈루나주얼리] 블랙 주식회사 웹이즈'</li></ul> |
|
76 |
+
| 11.0 | <ul><li>'1631뉴욕 볼캡 6color / 남녀공용모자 캡모자 그린 레이어드컴퍼니'</li><li>'패션벙거지0009 벙거지 가을 모자 여성 패션 밤색 골드코스트'</li><li>'꽈배기니트벙거지모자B28016 검정 프레임바이브'</li></ul> |
|
77 |
+
| 5.0 | <ul><li>'니트 베레모 S1450 진주방울 핑크 지에이치글로벌'</li><li>'[박민영, 라이즈 원빈 착용] 스터드 로고 울 베레모 블랙 '</li><li>'/ 베이직 레더 뉴스보이캡 빵모자 (2color) 아이보리_one size 롭스(robs)'</li></ul> |
|
78 |
+
|
79 |
+
## Evaluation
|
80 |
+
|
81 |
+
### Metrics
|
82 |
+
| Label | Metric |
|
83 |
+
|:--------|:-------|
|
84 |
+
| **all** | 0.8489 |
|
85 |
+
|
86 |
+
## Uses
|
87 |
+
|
88 |
+
### Direct Use for Inference
|
89 |
+
|
90 |
+
First install the SetFit library:
|
91 |
+
|
92 |
+
```bash
|
93 |
+
pip install setfit
|
94 |
+
```
|
95 |
+
|
96 |
+
Then you can load this model and run inference.
|
97 |
+
|
98 |
+
```python
|
99 |
+
from setfit import SetFitModel
|
100 |
+
|
101 |
+
# Download from the 🤗 Hub
|
102 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_ac2")
|
103 |
+
# Run inference
|
104 |
+
preds = model("남여공용 기본군모 4컬러 EVE 카키 에브리씽굿")
|
105 |
+
```
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Downstream Use
|
109 |
+
|
110 |
+
*List how someone could finetune this model on their own dataset.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
<!--
|
114 |
+
### Out-of-Scope Use
|
115 |
+
|
116 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
117 |
+
-->
|
118 |
+
|
119 |
+
<!--
|
120 |
+
## Bias, Risks and Limitations
|
121 |
+
|
122 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
123 |
+
-->
|
124 |
+
|
125 |
+
<!--
|
126 |
+
### Recommendations
|
127 |
+
|
128 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
129 |
+
-->
|
130 |
+
|
131 |
+
## Training Details
|
132 |
+
|
133 |
+
### Training Set Metrics
|
134 |
+
| Training set | Min | Median | Max |
|
135 |
+
|:-------------|:----|:-------|:----|
|
136 |
+
| Word count | 3 | 9.5523 | 21 |
|
137 |
+
|
138 |
+
| Label | Training Sample Count |
|
139 |
+
|:------|:----------------------|
|
140 |
+
| 0.0 | 50 |
|
141 |
+
| 1.0 | 50 |
|
142 |
+
| 2.0 | 50 |
|
143 |
+
| 3.0 | 50 |
|
144 |
+
| 4.0 | 50 |
|
145 |
+
| 5.0 | 50 |
|
146 |
+
| 6.0 | 50 |
|
147 |
+
| 7.0 | 50 |
|
148 |
+
| 8.0 | 50 |
|
149 |
+
| 9.0 | 50 |
|
150 |
+
| 10.0 | 50 |
|
151 |
+
| 11.0 | 50 |
|
152 |
+
| 12.0 | 50 |
|
153 |
+
|
154 |
+
### Training Hyperparameters
|
155 |
+
- batch_size: (512, 512)
|
156 |
+
- num_epochs: (20, 20)
|
157 |
+
- max_steps: -1
|
158 |
+
- sampling_strategy: oversampling
|
159 |
+
- num_iterations: 40
|
160 |
+
- body_learning_rate: (2e-05, 2e-05)
|
161 |
+
- head_learning_rate: 2e-05
|
162 |
+
- loss: CosineSimilarityLoss
|
163 |
+
- distance_metric: cosine_distance
|
164 |
+
- margin: 0.25
|
165 |
+
- end_to_end: False
|
166 |
+
- use_amp: False
|
167 |
+
- warmup_proportion: 0.1
|
168 |
+
- seed: 42
|
169 |
+
- eval_max_steps: -1
|
170 |
+
- load_best_model_at_end: False
|
171 |
+
|
172 |
+
### Training Results
|
173 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
174 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
175 |
+
| 0.0098 | 1 | 0.4348 | - |
|
176 |
+
| 0.4902 | 50 | 0.3427 | - |
|
177 |
+
| 0.9804 | 100 | 0.1921 | - |
|
178 |
+
| 1.4706 | 150 | 0.1061 | - |
|
179 |
+
| 1.9608 | 200 | 0.0544 | - |
|
180 |
+
| 2.4510 | 250 | 0.0384 | - |
|
181 |
+
| 2.9412 | 300 | 0.0155 | - |
|
182 |
+
| 3.4314 | 350 | 0.0128 | - |
|
183 |
+
| 3.9216 | 400 | 0.0177 | - |
|
184 |
+
| 4.4118 | 450 | 0.0082 | - |
|
185 |
+
| 4.9020 | 500 | 0.005 | - |
|
186 |
+
| 5.3922 | 550 | 0.0007 | - |
|
187 |
+
| 5.8824 | 600 | 0.0004 | - |
|
188 |
+
| 6.3725 | 650 | 0.0003 | - |
|
189 |
+
| 6.8627 | 700 | 0.0003 | - |
|
190 |
+
| 7.3529 | 750 | 0.0003 | - |
|
191 |
+
| 7.8431 | 800 | 0.0003 | - |
|
192 |
+
| 8.3333 | 850 | 0.0003 | - |
|
193 |
+
| 8.8235 | 900 | 0.0002 | - |
|
194 |
+
| 9.3137 | 950 | 0.0002 | - |
|
195 |
+
| 9.8039 | 1000 | 0.0001 | - |
|
196 |
+
| 10.2941 | 1050 | 0.0001 | - |
|
197 |
+
| 10.7843 | 1100 | 0.0001 | - |
|
198 |
+
| 11.2745 | 1150 | 0.0001 | - |
|
199 |
+
| 11.7647 | 1200 | 0.0001 | - |
|
200 |
+
| 12.2549 | 1250 | 0.0001 | - |
|
201 |
+
| 12.7451 | 1300 | 0.0001 | - |
|
202 |
+
| 13.2353 | 1350 | 0.0001 | - |
|
203 |
+
| 13.7255 | 1400 | 0.0001 | - |
|
204 |
+
| 14.2157 | 1450 | 0.0001 | - |
|
205 |
+
| 14.7059 | 1500 | 0.0001 | - |
|
206 |
+
| 15.1961 | 1550 | 0.0001 | - |
|
207 |
+
| 15.6863 | 1600 | 0.0001 | - |
|
208 |
+
| 16.1765 | 1650 | 0.0001 | - |
|
209 |
+
| 16.6667 | 1700 | 0.0001 | - |
|
210 |
+
| 17.1569 | 1750 | 0.0001 | - |
|
211 |
+
| 17.6471 | 1800 | 0.0001 | - |
|
212 |
+
| 18.1373 | 1850 | 0.0001 | - |
|
213 |
+
| 18.6275 | 1900 | 0.0001 | - |
|
214 |
+
| 19.1176 | 1950 | 0.0001 | - |
|
215 |
+
| 19.6078 | 2000 | 0.0001 | - |
|
216 |
+
|
217 |
+
### Framework Versions
|
218 |
+
- Python: 3.10.12
|
219 |
+
- SetFit: 1.1.0.dev0
|
220 |
+
- Sentence Transformers: 3.1.1
|
221 |
+
- Transformers: 4.46.1
|
222 |
+
- PyTorch: 2.4.0+cu121
|
223 |
+
- Datasets: 2.20.0
|
224 |
+
- Tokenizers: 0.20.0
|
225 |
+
|
226 |
+
## Citation
|
227 |
+
|
228 |
+
### BibTeX
|
229 |
+
```bibtex
|
230 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
231 |
+
doi = {10.48550/ARXIV.2209.11055},
|
232 |
+
url = {https://arxiv.org/abs/2209.11055},
|
233 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
234 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
235 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
236 |
+
publisher = {arXiv},
|
237 |
+
year = {2022},
|
238 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
239 |
+
}
|
240 |
+
```
|
241 |
+
|
242 |
+
<!--
|
243 |
+
## Glossary
|
244 |
+
|
245 |
+
*Clearly define terms in order to be accessible across audiences.*
|
246 |
+
-->
|
247 |
+
|
248 |
+
<!--
|
249 |
+
## Model Card Authors
|
250 |
+
|
251 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
252 |
+
-->
|
253 |
+
|
254 |
+
<!--
|
255 |
+
## Model Card Contact
|
256 |
+
|
257 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
258 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_ac",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:764f30753eecfc632a003f3438dd32d4cb4e73f0bb5c933a9b8fccddfbe02579
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75738c0048b61dad8ac19e1c17e86d9a55041063fd60f83f9d273de7ec14f5d7
|
3 |
+
size 80895
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|