mini1013 commited on
Commit
1a6d7a2
·
verified ·
1 Parent(s): 7b495ec

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 옴므 교체용 가죽 벨트끈 벨트줄 허리띠 벨트 가죽 수동 자동용 22_수동벨트용 이태리가죽 3.3cm_카멜(42인치) 에스컴퍼니
14
+ - text: 여성 여자 패션 와이드 밴딩 벨트 패딩 코트 허리 허리띠 원피스 가디건 코디 패딩벨트 088_(SH30)_아이보리 {SH30-Ivory}
15
+ 스웰swell
16
+ - text: '[1 + 1]쭉쭉스판 늘어나는 밴딩 벨트 남여공용 캐쥬얼 데일리 군용 텍티컬 벨트 01. 늘어나는 벨트 1+1_05. 다크브라운_라이트브라운
17
+ 스토리몰2'
18
+ - text: '[로제이] 정장 캐주얼 가죽 더블 서스펜더 멜빵 NRMGSN011_BL 블랙_free '
19
+ - text: 모두샵 남자 가죽 청바지벨트 캐주얼벨트 허리띠 이니셜각인 7. 브라운 D107_한글(정자체)_보통길이(36까지착용가능) 모두샾
20
+ inference: true
21
+ model-index:
22
+ - name: SetFit with mini1013/master_domain
23
+ results:
24
+ - task:
25
+ type: text-classification
26
+ name: Text Classification
27
+ dataset:
28
+ name: Unknown
29
+ type: unknown
30
+ split: test
31
+ metrics:
32
+ - type: metric
33
+ value: 0.9649836541954232
34
+ name: Metric
35
+ ---
36
+
37
+ # SetFit with mini1013/master_domain
38
+
39
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
40
+
41
+ The model has been trained using an efficient few-shot learning technique that involves:
42
+
43
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
44
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** SetFit
50
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
51
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Number of Classes:** 3 classes
54
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
61
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
62
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
63
+
64
+ ### Model Labels
65
+ | Label | Examples |
66
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
67
+ | 1.0 | <ul><li>'고리 집게 가방 여행용 멜빵 클립 다용도 삼각버클 후크 옐로우몰'</li><li>'패션 여성서스펜더 스트랩 양복 출근룩 정장 코스튬 흰색 폭 2.5cm 120cm 맴매2'</li><li>'패션 여성서스펜더 스트랩 양복 출근룩 정장 코스튬 파란색 흰색 빨간색 줄무늬 폭2.5 120cm 맴매2'</li></ul> |
68
+ | 2.0 | <ul><li>'Basic Leather Belt 네이비_100cm 만달문화여행사'</li><li>'다이에나롤랑 러블리 여자벨트 146276 은장 브라운 FCB0012CM_L 105 네잎클로버마켓'</li><li>'[갤러리아] 헤지스핸드백HJBE2F406W2브라운 스티치장식 소가죽 여성 벨트(타임월드) 한화갤러리아(주)'</li></ul> |
69
+ | 0.0 | <ul><li>'(아크테릭스)(공식판매처)(23SS) 컨베이어 벨트 32mm (AENSUX5577) BLACK_SM '</li><li>'[갤러리아] 헤지스핸드백 HJBE2F775BK_ 블랙 빅로고 버클 가죽 자동벨트(타임월드) 한화갤러리아(주)'</li><li>'닥스_핸드백 (선물포장/쇼핑백동봉) 블랙 체크배색 가죽 자동벨트 DBBE3E990BK 롯데백화점2관'</li></ul> |
70
+
71
+ ## Evaluation
72
+
73
+ ### Metrics
74
+ | Label | Metric |
75
+ |:--------|:-------|
76
+ | **all** | 0.9650 |
77
+
78
+ ## Uses
79
+
80
+ ### Direct Use for Inference
81
+
82
+ First install the SetFit library:
83
+
84
+ ```bash
85
+ pip install setfit
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
+
90
+ ```python
91
+ from setfit import SetFitModel
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SetFitModel.from_pretrained("mini1013/master_cate_ac3")
95
+ # Run inference
96
+ preds = model("[로제이] 정장 캐주얼 가죽 더블 서스펜더 멜빵 NRMGSN011_BL 블랙_free ")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:-------|:----|
128
+ | Word count | 3 | 9.6133 | 17 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:------|:----------------------|
132
+ | 0.0 | 50 |
133
+ | 1.0 | 50 |
134
+ | 2.0 | 50 |
135
+
136
+ ### Training Hyperparameters
137
+ - batch_size: (512, 512)
138
+ - num_epochs: (20, 20)
139
+ - max_steps: -1
140
+ - sampling_strategy: oversampling
141
+ - num_iterations: 40
142
+ - body_learning_rate: (2e-05, 2e-05)
143
+ - head_learning_rate: 2e-05
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: False
149
+ - warmup_proportion: 0.1
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: False
153
+
154
+ ### Training Results
155
+ | Epoch | Step | Training Loss | Validation Loss |
156
+ |:-------:|:----:|:-------------:|:---------------:|
157
+ | 0.0417 | 1 | 0.394 | - |
158
+ | 2.0833 | 50 | 0.0731 | - |
159
+ | 4.1667 | 100 | 0.0 | - |
160
+ | 6.25 | 150 | 0.0 | - |
161
+ | 8.3333 | 200 | 0.0 | - |
162
+ | 10.4167 | 250 | 0.0 | - |
163
+ | 12.5 | 300 | 0.0 | - |
164
+ | 14.5833 | 350 | 0.0 | - |
165
+ | 16.6667 | 400 | 0.0 | - |
166
+ | 18.75 | 450 | 0.0 | - |
167
+
168
+ ### Framework Versions
169
+ - Python: 3.10.12
170
+ - SetFit: 1.1.0.dev0
171
+ - Sentence Transformers: 3.1.1
172
+ - Transformers: 4.46.1
173
+ - PyTorch: 2.4.0+cu121
174
+ - Datasets: 2.20.0
175
+ - Tokenizers: 0.20.0
176
+
177
+ ## Citation
178
+
179
+ ### BibTeX
180
+ ```bibtex
181
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
182
+ doi = {10.48550/ARXIV.2209.11055},
183
+ url = {https://arxiv.org/abs/2209.11055},
184
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
185
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
186
+ title = {Efficient Few-Shot Learning Without Prompts},
187
+ publisher = {arXiv},
188
+ year = {2022},
189
+ copyright = {Creative Commons Attribution 4.0 International}
190
+ }
191
+ ```
192
+
193
+ <!--
194
+ ## Glossary
195
+
196
+ *Clearly define terms in order to be accessible across audiences.*
197
+ -->
198
+
199
+ <!--
200
+ ## Model Card Authors
201
+
202
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
203
+ -->
204
+
205
+ <!--
206
+ ## Model Card Contact
207
+
208
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
209
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_ac",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27814c993e1ac0f82b63d5abf7165698c6ae3f93b8cbef6b999debcfe413efdc
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0340ad29e37863734f9f58604c860f9558172152b770778f9f27b447bb557ad5
3
+ size 19295
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff