File size: 9,734 Bytes
1e9a56c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 매일유업 앱솔루트 센서티브 1단계 900g x 1 [음료] 차음료_비락식혜175ml30캔 출산/육아 > 분유 > 국내분유
- text: Hipp  콤비오틱 유기농 1단계 800g [육아] 분유_Hipp  콤비오틱 유기농 3단계 800g 출산/육아 > 분유 > 수입분유
- text: 남양유업 아이엠마더 액상 3단계 240ml x96개  출산/육아 > 분유 > 국내분유
- text: 일동후디스 프리미엄 산양분유 3단계 800g x 1 [육아] 분유_파스퇴르 무항생제 위드맘 3단계 750g 출산/육아 > 분유 >
    국내분유
- text: 일동후디스 프리미엄 산양분유 1단계 800g x 1 [음료] 탄산음료_웰치스제로오렌지355ml24캔 출산/육아 > 분유 > 국내분유
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 1.0
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                             |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0   | <ul><li>'셀렉스 매일 마시는 프로틴 12l 160ml × 48개 출산/육아 > 분유 > 특수분유'</li><li>'일동후디스 초유밀플러스2단계 1캔(1gx90포))  출산/육아 > 분유 > 특수분유'</li><li>'gvp 스마트폰 카드포켓 스마트링블랙  출산/육아 > 분유 > 특수분유'</li></ul>                                                                                                                                                      |
| 0.0   | <ul><li>'매일유업 앱솔루트 명작 2FL 액상 2단계 240ml 24개 x2개  출산/육아 > 분유 > 국내분유'</li><li>'매일유업 앱솔루트 센서티브 1단계 900g x 1개 [라면] 봉지라면_얼큰한 너구리 120g 20개 출산/육아 > 분유 > 국내분유'</li><li>'매일유업 앱솔루트 센서티브 1단계 900g x 1개 [음료] 우유두유_삼육검은콩앤칼슘파우치190ml40팩 출산/육아 > 분유 > 국내분유'</li></ul>                                                                              |
| 1.0   | <ul><li>'힙 압타밀 HA 뢰벤짠 밀라산 홀레 퇴퍼 베바 세레락 프레 2단계 콤비오틱 무전분 산양 [퇴퍼] Töpfer_퇴퍼 락타나 600g (최대8통)_[1통] xPRE Topfer 출산/육아 > 분유 > 수입분유'</li><li>'뉴트리시아 압타밀 프로누트라 어드밴스 2단계 800g [음료] 탄산음료_데미소다피치250ml30캔 출산/육아 > 분유 > 수입분유'</li><li>'퇴퍼 홀레 뢰벤짠 힙 노발락 압타밀 무전분 AR 킨더밀쉬 압타밀 오가닉(New)_오가닉 2 800g 1통_◆dm4056631003169_1◆ 출산/육아 > 분유 > 수입분유'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 1.0      |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc6")
# Run inference
preds = model("남양유업 아이엠마더 액상 3단계 240ml x96개  출산/육아 > 분유 > 국내분유")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 7   | 14.9429 | 30  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 70                    |
| 1.0   | 70                    |
| 2.0   | 70                    |

### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0238  | 1    | 0.4943        | -               |
| 1.1905  | 50   | 0.4806        | -               |
| 2.3810  | 100  | 0.1671        | -               |
| 3.5714  | 150  | 0.0003        | -               |
| 4.7619  | 200  | 0.0           | -               |
| 5.9524  | 250  | 0.0           | -               |
| 7.1429  | 300  | 0.0           | -               |
| 8.3333  | 350  | 0.0           | -               |
| 9.5238  | 400  | 0.0           | -               |
| 10.7143 | 450  | 0.0           | -               |
| 11.9048 | 500  | 0.0           | -               |
| 13.0952 | 550  | 0.0           | -               |
| 14.2857 | 600  | 0.0           | -               |
| 15.4762 | 650  | 0.0           | -               |
| 16.6667 | 700  | 0.0           | -               |
| 17.8571 | 750  | 0.0           | -               |
| 19.0476 | 800  | 0.0           | -               |
| 20.2381 | 850  | 0.0           | -               |
| 21.4286 | 900  | 0.0           | -               |
| 22.6190 | 950  | 0.0           | -               |
| 23.8095 | 1000 | 0.0           | -               |
| 25.0    | 1050 | 0.0           | -               |
| 26.1905 | 1100 | 0.0           | -               |
| 27.3810 | 1150 | 0.0           | -               |
| 28.5714 | 1200 | 0.0           | -               |
| 29.7619 | 1250 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->