File size: 9,734 Bytes
1e9a56c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 매일유업 앱솔루트 센서티브 1단계 900g x 1개 [음료] 차음료_비락식혜175ml30캔 출산/육아 > 분유 > 국내분유
- text: Hipp 힙 콤비오틱 유기농 1단계 800g [육아] 분유_Hipp 힙 콤비오틱 유기농 3단계 800g 출산/육아 > 분유 > 수입분유
- text: 남양유업 아이엠마더 액상 3단계 240ml x96개 출산/육아 > 분유 > 국내분유
- text: 일동후디스 프리미엄 산양분유 3단계 800g x 1개 [육아] 분유_파스퇴르 무항생제 위드맘 3단계 750g 출산/육아 > 분유 >
국내분유
- text: 일동후디스 프리미엄 산양분유 1단계 800g x 1개 [음료] 탄산음료_웰치스제로오렌지355ml24캔 출산/육아 > 분유 > 국내분유
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 | <ul><li>'셀렉스 매일 마시는 프로틴 12l 160ml × 48개 출산/육아 > 분유 > 특수분유'</li><li>'일동후디스 초유밀플러스2단계 1캔(1gx90포)) 출산/육아 > 분유 > 특수분유'</li><li>'gvp 스마트폰 카드포켓 스마트링블랙 출산/육아 > 분유 > 특수분유'</li></ul> |
| 0.0 | <ul><li>'매일유업 앱솔루트 명작 2FL 액상 2단계 240ml 24개 x2개 출산/육아 > 분유 > 국내분유'</li><li>'매일유업 앱솔루트 센서티브 1단계 900g x 1개 [라면] 봉지라면_얼큰한 너구리 120g 20개 출산/육아 > 분유 > 국내분유'</li><li>'매일유업 앱솔루트 센서티브 1단계 900g x 1개 [음료] 우유두유_삼육검은콩앤칼슘파우치190ml40팩 출산/육아 > 분유 > 국내분유'</li></ul> |
| 1.0 | <ul><li>'힙 압타밀 HA 뢰벤짠 밀라산 홀레 퇴퍼 베바 세레락 프레 2단계 콤비오틱 무전분 산양 [퇴퍼] Töpfer_퇴퍼 락타나 600g (최대8통)_[1통] xPRE Topfer 출산/육아 > 분유 > 수입분유'</li><li>'뉴트리시아 압타밀 프로누트라 어드밴스 2단계 800g [음료] 탄산음료_데미소다피치250ml30캔 출산/육아 > 분유 > 수입분유'</li><li>'퇴퍼 홀레 뢰벤짠 힙 노발락 압타밀 무전분 AR 킨더밀쉬 압타밀 오가닉(New)_오가닉 2 800g 1통_◆dm4056631003169_1◆ 출산/육아 > 분유 > 수입분유'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc6")
# Run inference
preds = model("남양유업 아이엠마더 액상 3단계 240ml x96개 출산/육아 > 분유 > 국내분유")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 7 | 14.9429 | 30 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0238 | 1 | 0.4943 | - |
| 1.1905 | 50 | 0.4806 | - |
| 2.3810 | 100 | 0.1671 | - |
| 3.5714 | 150 | 0.0003 | - |
| 4.7619 | 200 | 0.0 | - |
| 5.9524 | 250 | 0.0 | - |
| 7.1429 | 300 | 0.0 | - |
| 8.3333 | 350 | 0.0 | - |
| 9.5238 | 400 | 0.0 | - |
| 10.7143 | 450 | 0.0 | - |
| 11.9048 | 500 | 0.0 | - |
| 13.0952 | 550 | 0.0 | - |
| 14.2857 | 600 | 0.0 | - |
| 15.4762 | 650 | 0.0 | - |
| 16.6667 | 700 | 0.0 | - |
| 17.8571 | 750 | 0.0 | - |
| 19.0476 | 800 | 0.0 | - |
| 20.2381 | 850 | 0.0 | - |
| 21.4286 | 900 | 0.0 | - |
| 22.6190 | 950 | 0.0 | - |
| 23.8095 | 1000 | 0.0 | - |
| 25.0 | 1050 | 0.0 | - |
| 26.1905 | 1100 | 0.0 | - |
| 27.3810 | 1150 | 0.0 | - |
| 28.5714 | 1200 | 0.0 | - |
| 29.7619 | 1250 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |