mini1013 commited on
Commit
8a1b1e7
·
verified ·
1 Parent(s): 164286a

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 엔리안 젤 클렌져/ 젤 리무버 120ml 젤 닦는거 2엔리안 젤 리무버120ml 레브숑
14
+ - text: 모스티브 진짜시리즈 컬러젤 진짜화이트 옵션없음 주식회사 코즈랩
15
+ - text: 독일직수입 닥터+ 스피릿 안티 F 오일 12ml 옵션없음 아담앤이브
16
+ - text: 요거트젤네일 젤클렌저 클리너+젤리무버 스톤2알 요거트젤 젤클렌저+젤리무버+스톤2알 백억언니
17
+ - text: '[2+1] 데싱디바 매직프레스 BEST 웨딩 네일 SET 옵션없음 제이씨코리아주식회사'
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.6072186836518046
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 7 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 6.0 | <ul><li>'더젤 랜덤파츠2알 누드톤 시럽 펄 컬러 젤 네일 폴리쉬 매니큐어 더젤 1~99_031.베이비스킨 주식회사 디에이치엠'</li><li>'요거트젤 화양연화 세트 시럽 글리터 젤네일 옵션없음 다즐링네일'</li><li>'5월 프로모션 | 디젤 오로라퀸 프리즘 컬렉션 8종 단품 AQ57 주식회사 사라센'</li></ul> |
66
+ | 5.0 | <ul><li>'네일팁 양면테이프 스티커 24P 1세트 셀프젤네일재료 유키 네일 양면 실리콘 테이프 24ps (주)한국코스텍'</li><li>'다이아미 카누팁 리필팁 네일연장팁 [ 클리어 ]_T26 / 5호 주식회사 시그니처바스켓(SIGNATURE BASKET)'</li><li>'잇템샵 여름네일 페디큐어 네일아트 패디팁 패디큐어 인조발톱 바캉스 페디큐어125 내가원하는잇템샵'</li></ul> |
67
+ | 1.0 | <ul><li>'(신상추가) 젤로젤로 지그재그젤 논와이프튜브젤 손쉬운아트 46종 JT43스윗캐러멜 아리아떼'</li><li>'[웨딩파우더 SET] 웨딩 화이트/웨딩 핑크 옵션없음 제이유인터내셔널'</li><li>'리얼묘해 리얼프린세스 [리얼신데렐라 파우더] 미러파우더 파우더네일 리얼자스민 리얼묘해&세리오'</li></ul> |
68
+ | 0.0 | <ul><li>'과일나라 본체청정연 네일리무버(아세톤) 2023년 리뉴얼 옵션없음 최고상사'</li><li>'루벤스 젤클렌져 1,000ml 옵션없음 별돌이네네일재료'</li><li>'루핀 젤클리너 젤클렌저 500ml 옵션없음 주식회사 코즈랩'</li></ul> |
69
+ | 3.0 | <ul><li>'15도 네일 손목 받침대 팔받침대 15도 네일손목받침대 부띠끄코리아'</li><li>'개업 결혼 돌 답례품 프리미엄 블랙 손톱깎이세트 판촉물 인쇄 2.고급 종이포장 스티커 티오티'</li><li>'아크릴 네일 자석 진열대 디스플레이 컬러차트판 24칸 24칸투명아크릴 가재울커머스'</li></ul> |
70
+ | 4.0 | <ul><li>'헤라 네일 키트 헤라 네일 3종 세트 매니큐어 AB당당'</li><li>'셀프 젤네일 세트 홈 키트 로나네일'</li><li>'[위드샨] 맞춤 케어 2종 세트 (3타입 중 택1) 잘 부러지고 약한 손톱(스트랭쓰너+쉴드탑) 주식회사손과발'</li></ul> |
71
+ | 2.0 | <ul><li>'Burts Bees 100 천연 레몬 버터 큐티클 크림 17g06온스 틴 케이스 0.6 Ounce Pack of 1_레몬 버터 믿고보는보부상'</li><li>'케라셀 패치 14매 나이트타임 손발톱영양제 손발톱 강화제 옵션없음 행운'</li><li>'보이델라 목초앰플 문제성 발톱 집중 케어 (BEST) [50%] 목초앰플 3개 (주)헤렌'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Accuracy |
77
+ |:--------|:---------|
78
+ | **all** | 0.6072 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bt1_test")
97
+ # Run inference
98
+ preds = model("모스티브 진짜시리즈 컬러젤 진짜화이트 옵션없음 주식회사 코즈랩")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:-------|:----|
130
+ | Word count | 4 | 9.3955 | 18 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:------|:----------------------|
134
+ | 0.0 | 16 |
135
+ | 1.0 | 19 |
136
+ | 2.0 | 21 |
137
+ | 3.0 | 32 |
138
+ | 4.0 | 10 |
139
+ | 5.0 | 16 |
140
+ | 6.0 | 20 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (512, 512)
144
+ - num_epochs: (40, 40)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - num_iterations: 50
148
+ - body_learning_rate: (2e-05, 1e-05)
149
+ - head_learning_rate: 0.01
150
+ - loss: CosineSimilarityLoss
151
+ - distance_metric: cosine_distance
152
+ - margin: 0.25
153
+ - end_to_end: False
154
+ - use_amp: False
155
+ - warmup_proportion: 0.1
156
+ - l2_weight: 0.01
157
+ - seed: 42
158
+ - eval_max_steps: -1
159
+ - load_best_model_at_end: False
160
+
161
+ ### Training Results
162
+ | Epoch | Step | Training Loss | Validation Loss |
163
+ |:-------:|:----:|:-------------:|:---------------:|
164
+ | 0.0714 | 1 | 0.5013 | - |
165
+ | 3.5714 | 50 | 0.2888 | - |
166
+ | 7.1429 | 100 | 0.0488 | - |
167
+ | 10.7143 | 150 | 0.0137 | - |
168
+ | 14.2857 | 200 | 0.0016 | - |
169
+ | 17.8571 | 250 | 0.0002 | - |
170
+ | 21.4286 | 300 | 0.0001 | - |
171
+ | 25.0 | 350 | 0.0001 | - |
172
+ | 28.5714 | 400 | 0.0001 | - |
173
+ | 32.1429 | 450 | 0.0001 | - |
174
+ | 35.7143 | 500 | 0.0001 | - |
175
+ | 39.2857 | 550 | 0.0001 | - |
176
+
177
+ ### Framework Versions
178
+ - Python: 3.10.12
179
+ - SetFit: 1.1.0
180
+ - Sentence Transformers: 3.3.1
181
+ - Transformers: 4.44.2
182
+ - PyTorch: 2.2.0a0+81ea7a4
183
+ - Datasets: 3.2.0
184
+ - Tokenizers: 0.19.1
185
+
186
+ ## Citation
187
+
188
+ ### BibTeX
189
+ ```bibtex
190
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
191
+ doi = {10.48550/ARXIV.2209.11055},
192
+ url = {https://arxiv.org/abs/2209.11055},
193
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
194
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
195
+ title = {Efficient Few-Shot Learning Without Prompts},
196
+ publisher = {arXiv},
197
+ year = {2022},
198
+ copyright = {Creative Commons Attribution 4.0 International}
199
+ }
200
+ ```
201
+
202
+ <!--
203
+ ## Glossary
204
+
205
+ *Clearly define terms in order to be accessible across audiences.*
206
+ -->
207
+
208
+ <!--
209
+ ## Model Card Authors
210
+
211
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
212
+ -->
213
+
214
+ <!--
215
+ ## Model Card Contact
216
+
217
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
218
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bt_test",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cae7d3f55bb83a3dbd773ffb901783792d10baa81c27cfc88f5dae53da0cdaad
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a9ccb5d4e42aecd13e1e204b004f3ad001dc352206ebdaeea5705effd32320a
3
+ size 43935
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff