--- base_model: mini1013/master_domain library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 루핀 젤크리너 1000ml 젤리무버 아세톤 젤클리너 루핀젤리무버1000ml 건강드림 - text: 요거트젤 버니츄 s63 베리츄 봄컬러 파스텔시럽젤 S56 핑크츄 더메이트 - text: 코스노리 컬러테라피 네일세럼 4ml 01 시트러스 (주)그레이스클럽 - text: 더젤 젤리무버 더젤 젤리무버 + 오팔스톤2알 주식회사 이룸 - text: 리본머리핀 태닝키티네일파츠(1개입)1-핑크리본머리핀 레드 리본머리핀(1개입) 올리비아수(oliviasoo) inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.6072186836518046 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 7 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | | | 5.0 | | | 1.0 | | | 0.0 | | | 3.0 | | | 4.0 | | | 2.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.6072 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bt1_test") # Run inference preds = model("더젤 젤리무버 더젤 젤리무버 + 오팔스톤2알 주식회사 이룸") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 9.3955 | 18 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 16 | | 1.0 | 19 | | 2.0 | 21 | | 3.0 | 32 | | 4.0 | 10 | | 5.0 | 16 | | 6.0 | 20 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (50, 50) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 60 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0625 | 1 | 0.4888 | - | | 3.125 | 50 | 0.3006 | - | | 6.25 | 100 | 0.0746 | - | | 9.375 | 150 | 0.0192 | - | | 12.5 | 200 | 0.0002 | - | | 15.625 | 250 | 0.0001 | - | | 18.75 | 300 | 0.0001 | - | | 21.875 | 350 | 0.0001 | - | | 25.0 | 400 | 0.0001 | - | | 28.125 | 450 | 0.0 | - | | 31.25 | 500 | 0.0 | - | | 34.375 | 550 | 0.0 | - | | 37.5 | 600 | 0.0 | - | | 40.625 | 650 | 0.0 | - | | 43.75 | 700 | 0.0 | - | | 46.875 | 750 | 0.0 | - | | 50.0 | 800 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```