File size: 20,031 Bytes
7db7d17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[VDAY] 포멜로 파라디 30ml 발렌타인 세트 코랄 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded
> 아틀리에 코롱 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱'
- text: 톰포드 비터 피치 오 드 퍼퓸 50ml LotteOn > 뷰티 > 향수 > 여성향수 LotteOn > 뷰티 > 향수 > 여성향수
- text: 샹스 오 드 빠르펭 35ml ssg > 뷰티 > 향수 > 여성향수 ssg > 뷰티 > 향수 > 여성향수
- text: 미라클 EDP 100ml LotteOn > 뷰티 > 향수 > 여성향수 LotteOn > 뷰티 > 향수 > 여성향수
- text: 퍼플라벤다 플라워디퓨저 150ml_P050374133 투명병/아카시아 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품 ssg
> 뷰티 > 미용기기/소품 > 거울/용기/기타소품
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.5350966429298067
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | <ul><li>'로즈마리 아로마 에센셜 오일 12ml 천연 디퓨저 마사지 족욕 피로 페퍼민트 본상품선택 × 1 (#M)쿠팡 홈>생활용품>헤어/바디/세안>바디로션/크림>아로마오일 Coupang > 뷰티 > 바디 > 바디로션/크림 > 아로마오일'</li><li>'루브르 알라바스트 디퓨저 스톤&리필 5ml 세트 (알라바스트 케이스+스톤+리필액 구성) 사모트라케의 승리의 여신 니케(멜 마르스) ssg > 뷰티 > 향수 > 여성향수;ssg > 뷰티 > 향수 > 캔들/디퓨저/아로마 ssg > 뷰티 > 향수 > 캔들/디퓨저/아로마'</li><li>'아이캔디 윈드스핀 매직 볼륨 헤어컬 디퓨저 ssg > 뷰티 > 헤어/바디 > 헤어케어 > 드라이샴푸;ssg > 뷰티 > 헤어/바디 > 헤어스타일링 ssg > 뷰티 > 헤어/바디 > 헤어케어 > 드라이샴푸'</li></ul> |
| 0 | <ul><li>'코롱 50ml 택 1 (+스페셜 GIFT ) 5) 라임 바질 앤 만다린 코롱 50ml (#M)신세계백화점/향수/여성향수 LOREAL > DepartmentSsg > 아틀리에 코롱 > Generic > 핸드크림'</li><li>'오 드 쏠레이 블랑 100ML SSG.COM>신세계백화점TOM FORD>FRAGRANCES>SIGNATURE FRAGRANCES;(#M)SSG.COM>신세계백화점TOM FORD>FRAGRANCE>SIGNATURE ssg > 뷰티 > 향수 > 여성향수'</li><li>'[메종마르지엘라](신세계타임스퀘어점패션관)바이 더 파이어플레이스 EDT 30ML(공식수입정품) 바이 더 파이어플레이스 30ML+선물박스포장 (#M)홈>화장품/미용>향수>남녀공용향수 Naverstore > 화장품/미용 > 향수 > 남녀공용향수'</li></ul> |
| 2 | <ul><li>'재고정리 오늘주문 내일도착 샤넬 코코 마드모아젤 우먼 오드퍼퓸 100ml 쇼핑백X (#M)11st>향수>여성향수>여성향수 11st > 뷰티 > 향수 > 여성향수'</li><li>'헉슬리 퍼퓸 블루 메디나 탠저린 15mL 홈>Fragrance;(#M)홈>프레그런스>향수 Naverstore > 화장품/미용 > 향수 > 남녀공용향수'</li><li>'조말론 오스만투스 블러썸 1온스 여성용 쾰른 스프레이 원래 언박스 단일상품 LotteOn > 뷰티 > 헤어/바디 > 바디케어 > 바디미스트/샤워코롱 LotteOn > 뷰티 > 헤어/바디 > 바디케어 > 바디미스트/샤워코롱'</li></ul> |
| 1 | <ul><li>'히어로 EDT 50ml DepartmentLotteOn > 뷰티 > 향수 > 남성용 > 31ml~50ml DepartmentLotteOn > 뷰티 > 향수 > 남성용 > 51ml~'</li><li>'에르메스 떼르 데르메스 오 뜨레 프라쉐 EDT 125ml/관 MinSellAmount (#M)바디/헤어>바디케어>바디로션 Gmarket > 뷰티 > 바디/헤어 > 바디케어 > 바디로션'</li><li>'[AK백화점][한정판] 랄프로렌 폴로 블루 베어 에디션 EDT 40ML(+단독 폴로블루 파우치) 단일상품 `1095946223` LotteOn > 뷰티 > 향수 > 향수세트 LotteOn > 뷰티 > 향수 > 향수세트'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.5351 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top11_test")
# Run inference
preds = model("샹스 오 드 빠르펭 35ml ssg > 뷰티 > 향수 > 여성향수 ssg > 뷰티 > 향수 > 여성향수")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 12 | 21.735 | 48 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 50 |
| 2 | 50 |
| 3 | 50 |
### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0032 | 1 | 0.4649 | - |
| 0.1597 | 50 | 0.4669 | - |
| 0.3195 | 100 | 0.4469 | - |
| 0.4792 | 150 | 0.4259 | - |
| 0.6390 | 200 | 0.3685 | - |
| 0.7987 | 250 | 0.2893 | - |
| 0.9585 | 300 | 0.2223 | - |
| 1.1182 | 350 | 0.1858 | - |
| 1.2780 | 400 | 0.1766 | - |
| 1.4377 | 450 | 0.1629 | - |
| 1.5974 | 500 | 0.1571 | - |
| 1.7572 | 550 | 0.1362 | - |
| 1.9169 | 600 | 0.1208 | - |
| 2.0767 | 650 | 0.1 | - |
| 2.2364 | 700 | 0.0746 | - |
| 2.3962 | 750 | 0.0699 | - |
| 2.5559 | 800 | 0.0635 | - |
| 2.7157 | 850 | 0.0464 | - |
| 2.8754 | 900 | 0.0246 | - |
| 3.0351 | 950 | 0.0195 | - |
| 3.1949 | 1000 | 0.0063 | - |
| 3.3546 | 1050 | 0.0004 | - |
| 3.5144 | 1100 | 0.0003 | - |
| 3.6741 | 1150 | 0.0001 | - |
| 3.8339 | 1200 | 0.0002 | - |
| 3.9936 | 1250 | 0.0007 | - |
| 4.1534 | 1300 | 0.0006 | - |
| 4.3131 | 1350 | 0.0001 | - |
| 4.4728 | 1400 | 0.0002 | - |
| 4.6326 | 1450 | 0.0001 | - |
| 4.7923 | 1500 | 0.0 | - |
| 4.9521 | 1550 | 0.0 | - |
| 5.1118 | 1600 | 0.0 | - |
| 5.2716 | 1650 | 0.0001 | - |
| 5.4313 | 1700 | 0.0 | - |
| 5.5911 | 1750 | 0.0001 | - |
| 5.7508 | 1800 | 0.0002 | - |
| 5.9105 | 1850 | 0.0 | - |
| 6.0703 | 1900 | 0.0 | - |
| 6.2300 | 1950 | 0.0 | - |
| 6.3898 | 2000 | 0.0 | - |
| 6.5495 | 2050 | 0.0 | - |
| 6.7093 | 2100 | 0.0 | - |
| 6.8690 | 2150 | 0.0 | - |
| 7.0288 | 2200 | 0.0 | - |
| 7.1885 | 2250 | 0.0002 | - |
| 7.3482 | 2300 | 0.0 | - |
| 7.5080 | 2350 | 0.0005 | - |
| 7.6677 | 2400 | 0.0003 | - |
| 7.8275 | 2450 | 0.0 | - |
| 7.9872 | 2500 | 0.0 | - |
| 8.1470 | 2550 | 0.0 | - |
| 8.3067 | 2600 | 0.0 | - |
| 8.4665 | 2650 | 0.0 | - |
| 8.6262 | 2700 | 0.0001 | - |
| 8.7859 | 2750 | 0.0 | - |
| 8.9457 | 2800 | 0.0 | - |
| 9.1054 | 2850 | 0.0005 | - |
| 9.2652 | 2900 | 0.0 | - |
| 9.4249 | 2950 | 0.0 | - |
| 9.5847 | 3000 | 0.0 | - |
| 9.7444 | 3050 | 0.0002 | - |
| 9.9042 | 3100 | 0.0047 | - |
| 10.0639 | 3150 | 0.0088 | - |
| 10.2236 | 3200 | 0.0031 | - |
| 10.3834 | 3250 | 0.0001 | - |
| 10.5431 | 3300 | 0.0 | - |
| 10.7029 | 3350 | 0.0 | - |
| 10.8626 | 3400 | 0.0 | - |
| 11.0224 | 3450 | 0.0 | - |
| 11.1821 | 3500 | 0.0 | - |
| 11.3419 | 3550 | 0.0 | - |
| 11.5016 | 3600 | 0.0 | - |
| 11.6613 | 3650 | 0.0001 | - |
| 11.8211 | 3700 | 0.0002 | - |
| 11.9808 | 3750 | 0.0025 | - |
| 12.1406 | 3800 | 0.0074 | - |
| 12.3003 | 3850 | 0.006 | - |
| 12.4601 | 3900 | 0.005 | - |
| 12.6198 | 3950 | 0.0006 | - |
| 12.7796 | 4000 | 0.0 | - |
| 12.9393 | 4050 | 0.0 | - |
| 13.0990 | 4100 | 0.0 | - |
| 13.2588 | 4150 | 0.0 | - |
| 13.4185 | 4200 | 0.0004 | - |
| 13.5783 | 4250 | 0.0 | - |
| 13.7380 | 4300 | 0.0 | - |
| 13.8978 | 4350 | 0.0 | - |
| 14.0575 | 4400 | 0.0 | - |
| 14.2173 | 4450 | 0.0 | - |
| 14.3770 | 4500 | 0.0 | - |
| 14.5367 | 4550 | 0.0 | - |
| 14.6965 | 4600 | 0.0 | - |
| 14.8562 | 4650 | 0.0 | - |
| 15.0160 | 4700 | 0.0 | - |
| 15.1757 | 4750 | 0.0 | - |
| 15.3355 | 4800 | 0.0 | - |
| 15.4952 | 4850 | 0.0 | - |
| 15.6550 | 4900 | 0.0 | - |
| 15.8147 | 4950 | 0.0 | - |
| 15.9744 | 5000 | 0.0 | - |
| 16.1342 | 5050 | 0.0 | - |
| 16.2939 | 5100 | 0.0 | - |
| 16.4537 | 5150 | 0.0 | - |
| 16.6134 | 5200 | 0.0 | - |
| 16.7732 | 5250 | 0.0 | - |
| 16.9329 | 5300 | 0.0 | - |
| 17.0927 | 5350 | 0.0 | - |
| 17.2524 | 5400 | 0.0 | - |
| 17.4121 | 5450 | 0.0 | - |
| 17.5719 | 5500 | 0.0 | - |
| 17.7316 | 5550 | 0.0 | - |
| 17.8914 | 5600 | 0.0002 | - |
| 18.0511 | 5650 | 0.0 | - |
| 18.2109 | 5700 | 0.0 | - |
| 18.3706 | 5750 | 0.0 | - |
| 18.5304 | 5800 | 0.0 | - |
| 18.6901 | 5850 | 0.0 | - |
| 18.8498 | 5900 | 0.0 | - |
| 19.0096 | 5950 | 0.0 | - |
| 19.1693 | 6000 | 0.0 | - |
| 19.3291 | 6050 | 0.0 | - |
| 19.4888 | 6100 | 0.0 | - |
| 19.6486 | 6150 | 0.0 | - |
| 19.8083 | 6200 | 0.0 | - |
| 19.9681 | 6250 | 0.0 | - |
| 20.1278 | 6300 | 0.0 | - |
| 20.2875 | 6350 | 0.0 | - |
| 20.4473 | 6400 | 0.0 | - |
| 20.6070 | 6450 | 0.0 | - |
| 20.7668 | 6500 | 0.0 | - |
| 20.9265 | 6550 | 0.0 | - |
| 21.0863 | 6600 | 0.0 | - |
| 21.2460 | 6650 | 0.0 | - |
| 21.4058 | 6700 | 0.0 | - |
| 21.5655 | 6750 | 0.0 | - |
| 21.7252 | 6800 | 0.0 | - |
| 21.8850 | 6850 | 0.0 | - |
| 22.0447 | 6900 | 0.0 | - |
| 22.2045 | 6950 | 0.0 | - |
| 22.3642 | 7000 | 0.0 | - |
| 22.5240 | 7050 | 0.0 | - |
| 22.6837 | 7100 | 0.0 | - |
| 22.8435 | 7150 | 0.0 | - |
| 23.0032 | 7200 | 0.0 | - |
| 23.1629 | 7250 | 0.0 | - |
| 23.3227 | 7300 | 0.0 | - |
| 23.4824 | 7350 | 0.0 | - |
| 23.6422 | 7400 | 0.0 | - |
| 23.8019 | 7450 | 0.0 | - |
| 23.9617 | 7500 | 0.0 | - |
| 24.1214 | 7550 | 0.0 | - |
| 24.2812 | 7600 | 0.0 | - |
| 24.4409 | 7650 | 0.0 | - |
| 24.6006 | 7700 | 0.0 | - |
| 24.7604 | 7750 | 0.0 | - |
| 24.9201 | 7800 | 0.0 | - |
| 25.0799 | 7850 | 0.0 | - |
| 25.2396 | 7900 | 0.0 | - |
| 25.3994 | 7950 | 0.0 | - |
| 25.5591 | 8000 | 0.0 | - |
| 25.7188 | 8050 | 0.0 | - |
| 25.8786 | 8100 | 0.0 | - |
| 26.0383 | 8150 | 0.0 | - |
| 26.1981 | 8200 | 0.0 | - |
| 26.3578 | 8250 | 0.0 | - |
| 26.5176 | 8300 | 0.0 | - |
| 26.6773 | 8350 | 0.0 | - |
| 26.8371 | 8400 | 0.0 | - |
| 26.9968 | 8450 | 0.0 | - |
| 27.1565 | 8500 | 0.0 | - |
| 27.3163 | 8550 | 0.0 | - |
| 27.4760 | 8600 | 0.0 | - |
| 27.6358 | 8650 | 0.0 | - |
| 27.7955 | 8700 | 0.0 | - |
| 27.9553 | 8750 | 0.0 | - |
| 28.1150 | 8800 | 0.0 | - |
| 28.2748 | 8850 | 0.0 | - |
| 28.4345 | 8900 | 0.0 | - |
| 28.5942 | 8950 | 0.0 | - |
| 28.7540 | 9000 | 0.0 | - |
| 28.9137 | 9050 | 0.0 | - |
| 29.0735 | 9100 | 0.0 | - |
| 29.2332 | 9150 | 0.0 | - |
| 29.3930 | 9200 | 0.0 | - |
| 29.5527 | 9250 | 0.0 | - |
| 29.7125 | 9300 | 0.0 | - |
| 29.8722 | 9350 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |