File size: 8,106 Bytes
8ec7640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: LG전자 24V50N-GR35K  정윤아
- text: '[윈도우11 홈] 이그닉 비와이 프로 27Y 2535 (5년 A/S) 게이밍 일체형 PC NVMe 1TB_16GB RAM 이그닉 주식회사'
- text: Dell 옵티플렉스 7020MFF i3-14100T 사무용 업무용 마이크로 폼펙터 초소형 PC 키보드 마우스 포함  주식회사 아이딜컴퍼니
- text: i5 13400F RX6600 본체 게이밍 PC 컴퓨터 G346A 1.G20-블랙_기본선택 애즈락 B610M D5 리메이드 컴퓨터
- text: 삼성전자 데스크탑 DM500TEA-A58A 컴퓨터 인텔i5-12세대 윈도우11홈 강의 재택근무 사무용  주식회사 에스씨엔씨
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.8841463414634146
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                        |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | <ul><li>'몬스타기어 7500F 4070 SUPER 32G 500GB 조립PC AMD 7500F 4070SUPER 32G 500GB 몬스타 주식회사'</li><li>'사무용 주식 인텔 i3 12100F/GT710/SSD 250G/8G 조립컴퓨터 컴퓨터본체 데스크탑 컴퓨터 조립PC 기본사양(추가구성에서 사양변경 가능) (주)아싸컴'</li><li>'장우컴 가정용 PC (13100F/8G/GT1030/256G) i40207  (주)장우컴퍼니'</li></ul>            |
| 0     | <ul><li>'T) DELL 옵티플렉스 7010SFF-UB02KR (NVMe 512G 교체 장착) 윈11프로 DSP설치 으뜸'</li><li>'이그닉 비와이 프로 27Y 4535 OS 미포함 NVMe 512G + 16GB RAM (5년 A/S)  빌리어네어에프'</li><li>'10만원 쿠폰💖 삼성 DM500TFA-A78A 데스크탑 인텔 13세대 i7 [기본제품]  (주)컴퓨존'</li></ul>                                                |
| 1     | <ul><li>'레노버 씽크스테이션 P620 라이젠 스레드리퍼 프로 5945WX RAM16GB SSD256GB NVMe HDD1TB NOVGA Win11 Pro  (주)디지탈노뜨'</li><li>'[Dell] Precision 3460 SFF i7-13700 8GB 1TB [추가구성 필요]  (주)다인엔시스'</li><li>'HP DL20 GEN10 E-2224 / 32G / HDD 1T x2 RAID1 / 서버2019 / AS3년 상품권  주식회사 제로원씨앤씨'</li></ul> |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.8841 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el0")
# Run inference
preds = model("LG전자 24V50N-GR35K  정윤아")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 4   | 11.6691 | 21  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 36                    |
| 2     | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0455  | 1    | 0.4961        | -               |
| 2.2727  | 50   | 0.005         | -               |
| 4.5455  | 100  | 0.0001        | -               |
| 6.8182  | 150  | 0.0001        | -               |
| 9.0909  | 200  | 0.0           | -               |
| 11.3636 | 250  | 0.0           | -               |
| 13.6364 | 300  | 0.0           | -               |
| 15.9091 | 350  | 0.0           | -               |
| 18.1818 | 400  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->