File size: 8,106 Bytes
8ec7640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: LG전자 24V50N-GR35K 정윤아
- text: '[윈도우11 홈] 이그닉 비와이 프로 27Y 2535 (5년 A/S) 게이밍 일체형 PC NVMe 1TB_16GB RAM 이그닉 주식회사'
- text: Dell 옵티플렉스 7020MFF i3-14100T 사무용 업무용 마이크로 폼펙터 초소형 PC 키보드 마우스 포함 주식회사 아이딜컴퍼니
- text: i5 13400F RX6600 본체 게이밍 PC 컴퓨터 G346A 1.G20-블랙_기본선택 애즈락 B610M D5 리메이드 컴퓨터
- text: 삼성전자 데스크탑 DM500TEA-A58A 컴퓨터 인텔i5-12세대 윈도우11홈 강의 재택근무 사무용 주식회사 에스씨엔씨
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8841463414634146
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | <ul><li>'몬스타기어 7500F 4070 SUPER 32G 500GB 조립PC AMD 7500F 4070SUPER 32G 500GB 몬스타 주식회사'</li><li>'사무용 주식 인텔 i3 12100F/GT710/SSD 250G/8G 조립컴퓨터 컴퓨터본체 데스크탑 컴퓨터 조립PC 기본사양(추가구성에서 사양변경 가능) (주)아싸컴'</li><li>'장우컴 가정용 PC (13100F/8G/GT1030/256G) i40207 (주)장우컴퍼니'</li></ul> |
| 0 | <ul><li>'T) DELL 옵티플렉스 7010SFF-UB02KR (NVMe 512G 교체 장착) 윈11프로 DSP설치 으뜸'</li><li>'이그닉 비와이 프로 27Y 4535 OS 미포함 NVMe 512G + 16GB RAM (5년 A/S) 빌리어네어에프'</li><li>'10만원 쿠폰💖 삼성 DM500TFA-A78A 데스크탑 인텔 13세대 i7 [기본제품] (주)컴퓨존'</li></ul> |
| 1 | <ul><li>'레노버 씽크스테이션 P620 라이젠 스레드리퍼 프로 5945WX RAM16GB SSD256GB NVMe HDD1TB NOVGA Win11 Pro (주)디지탈노뜨'</li><li>'[Dell] Precision 3460 SFF i7-13700 8GB 1TB [추가구성 필요] (주)다인엔시스'</li><li>'HP DL20 GEN10 E-2224 / 32G / HDD 1T x2 RAID1 / 서버2019 / AS3년 상품권 주식회사 제로원씨앤씨'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.8841 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el0")
# Run inference
preds = model("LG전자 24V50N-GR35K 정윤아")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 4 | 11.6691 | 21 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 36 |
| 2 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0455 | 1 | 0.4961 | - |
| 2.2727 | 50 | 0.005 | - |
| 4.5455 | 100 | 0.0001 | - |
| 6.8182 | 150 | 0.0001 | - |
| 9.0909 | 200 | 0.0 | - |
| 11.3636 | 250 | 0.0 | - |
| 13.6364 | 300 | 0.0 | - |
| 15.9091 | 350 | 0.0 | - |
| 18.1818 | 400 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |