File size: 9,532 Bytes
6121606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 원목 듀얼 모니터받침대 미송 B타입 M  주식회사 제이테크(J-TECH)
- text: 대형 게이밍모니터거치대 카멜마운트 PMA-2U USB지원 32인치 거치가능 모니터암 블랙 (주)순천물류
- text: 카멜마운트 CMA2V 듀얼 벽면 밀착형 상하 거치대 모니터암 블랙 주식회사 카멜인터내셔널
- text: 알파스캔 AOC AM400 시에라 블루 싱글 모니터암 컴퓨터 27인치 32인치 브라켓 AM400 로즈쿼츠 주식회사 멀티스캔텍
- text: 카멜인터내셔널 카멜마운트 고든 DMA-DSS 벽면 밀착형 듀얼 모니터암  (주)아이티엔조이
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.8586497890295358
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                     |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5     | <ul><li>'(주)근호컴 [리버네트워크]USB 2.0 리피터 전용 전원 어댑터 (NX-USBEXPW)  (주)근호컴'</li><li>'NEXI 넥시 정품 NX-USBEXPW아답터 (NX0284)  (주)유니정보통신'</li><li>'국산 12V 5A 모니터 아답터 ML-125A  헤라유통'</li></ul>                                               |
| 3     | <ul><li>'카멜마운트 GDA3 고든 디자인 모니터 거치대 모니터암 듀얼 블랙 주식회사 카멜인터내셔널'</li><li>'카멜 CA2 화이트 나뭉'</li><li>'마루느루 마운트뷰 MV-G1A  셜크'</li></ul>                                                                                                 |
| 0     | <ul><li>'셋탑 박스 게임기 리모컨 수납 TV 모니터 TOP 공간 선반 공유기 거치대  아이디어윙'</li><li>'리모컨수납 TV 모니터 TOP 공간선반 Black 연상연하'</li><li>'애니포트 TV거치대 엘마운트 다용도 멀티 선반 S900  이스토어'</li></ul>                                                               |
| 1     | <ul><li>'ELLOVEN 엘로벤 모니터스탠드+서랍 엘로벤 스탠드 앤트러 (804.851.02) 랩앤툴스'</li><li>'썬엔원 유보드 모니터받침대 U-BOARD Basic [화이트] 강화유리 / 유리색상: 투명 블랙 (주)세븐앤씨'</li><li>'앱코 MES100 사이드 폴딩 모니터 받침대 선반 받침 서랍 데스크 정리 블랙 앱코 MES100 블랙 (주)드림팩토리샵'</li></ul> |
| 2     | <ul><li>'아이존아이앤디 EZ MSM-10  아이러브드라이브(I Love Drive)'</li><li>'아이존아이앤디 EZ MSM-10/EZ MSM-10/조절브라켓/모니터스탠드/높낮이조절/조절스탠드/모니터홀타입/홀타입스탠드 EZ MSM-10 기쁘다희샵'</li><li>'루나랩 베사확장브라켓 200x100 200x200  주식회사 루나'</li></ul>                    |
| 4     | <ul><li>'지클릭커 휴 쉴드 PET 부착식 정보보호 모니터 보안필름 22인치  가이드컴퓨터'</li><li>'힐링쉴드 11890340 22인치 모니터 블루라이트차단 보호필름 거치식 조립형 양면필터  온라인정품인증점'</li><li>'지클릭커 휴 쉴드 PET 부착식 정보보호 모니터 보안필름 22인치  주식회사 리더샵'</li></ul>                               |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.8586 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el10")
# Run inference
preds = model("원목 듀얼 모니터받침대 미송 B타입 M  주식회사 제이테크(J-TECH)")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 4   | 9.9725 | 24  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |
| 2     | 13                    |
| 3     | 50                    |
| 4     | 5                     |
| 5     | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0286  | 1    | 0.4958        | -               |
| 1.4286  | 50   | 0.0386        | -               |
| 2.8571  | 100  | 0.0016        | -               |
| 4.2857  | 150  | 0.0001        | -               |
| 5.7143  | 200  | 0.0           | -               |
| 7.1429  | 250  | 0.0           | -               |
| 8.5714  | 300  | 0.0           | -               |
| 10.0    | 350  | 0.0           | -               |
| 11.4286 | 400  | 0.0001        | -               |
| 12.8571 | 450  | 0.0           | -               |
| 14.2857 | 500  | 0.0001        | -               |
| 15.7143 | 550  | 0.0           | -               |
| 17.1429 | 600  | 0.0001        | -               |
| 18.5714 | 650  | 0.0           | -               |
| 20.0    | 700  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->