---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[PS5] 딥 어스 디스크에디션 콘솔 커버 코발트 블루 오진상사(주)'
- text: '[PS5] 플레이스테이션5 디스크 에디션 오진상사(주)'
- text: PS4 그란투리스모 스포트 한글판 PlaystationHits 조이게임
- text: PS4 아이돌마스터 스탈릿 시즌 일반판 새제품 한글판 제이와이게임타운
- text: '[PS4] 색보이 빅 어드벤처 에이티게임(주)'
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.7771822358346095
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 |
- '[PS4] NBA 2K24 코비 브라이언트 에디션 특전 바우처 有 오진상사(주)'
- '닌텐도 스위치 둘이서 냥코 대전쟁 한글판 게임매니아'
- '닌텐도 마리오 카트 8 디럭스 + 조이콘 휠 패키지 SWITCH 한글판 마리오카트8 디럭스 (+조이콘핸들 세트)_마리오카트8 (+핸들 2개 원형 네온) 주식회사 쇼핑랩스'
|
| 2 | - '[트러스트마스터] T80 Ferrari 488 GTB 에디션 주식회사 투비네트웍스글로벌'
- '트러스트마스터 T300 페라리 Integral 레이싱휠 [PS5, PS4, PC지원] 주식회사 디에스샵(DS SHOP)'
- '레이저코리아 울버린 V2 크로마 Wolverine V2 Chroma 게임 컨트롤러 (주)하이케이넷'
|
| 1 | - '[노리박스] 오락실 게임기 분리기통(고급DX팩) (주)에스와이에스리테일'
- '[XBOX]마이크로 소프트 정식발매 X-BOX series X 1TB 새제품 다음텔레콤'
- '노리박스 32인치 스탠드형 강화유리 오락실게임기 오락기 DX팩(3000게임/720P/3~4인지원) (주)노리박스게임연구소'
|
| 0 | - 'PC 삼국지 14 한글판 (스팀코드발송) (주) 디지털터치'
- 'Wizard with a Gun 스팀 PC 뉴 어카운트 (정지X) / 기존계정 가능 기존 계정 스팀 유통할인'
- '철권7 tekken7 PC/스팀 철권7 (코드48시이내발송) 전한수'
|
| 4 | - '한국 닌텐도 정품 게임기 스위치 신형 OLED+콘트라 로그콥스+액정강화유리세트 OLED 네온레드블루 색상_OLED본체+뉴슈퍼마리오U디럭스+강화유리 에이지씨'
- '게임&워치 젤다의 전설 주식회사 손오공'
- '닌텐도 스위치 라이트 옐로 동물의 숲 케이스 주식회사 손오공'
|
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.7772 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el3")
# Run inference
preds = model("[PS4] 색보이 빅 어드벤처 에이티게임(주)")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 5 | 10.7325 | 23 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 43 |
| 1 | 50 |
| 2 | 50 |
| 3 | 50 |
| 4 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0263 | 1 | 0.496 | - |
| 1.3158 | 50 | 0.1186 | - |
| 2.6316 | 100 | 0.0532 | - |
| 3.9474 | 150 | 0.0398 | - |
| 5.2632 | 200 | 0.0002 | - |
| 6.5789 | 250 | 0.0001 | - |
| 7.8947 | 300 | 0.0001 | - |
| 9.2105 | 350 | 0.0001 | - |
| 10.5263 | 400 | 0.0001 | - |
| 11.8421 | 450 | 0.0001 | - |
| 13.1579 | 500 | 0.0001 | - |
| 14.4737 | 550 | 0.0001 | - |
| 15.7895 | 600 | 0.0 | - |
| 17.1053 | 650 | 0.0001 | - |
| 18.4211 | 700 | 0.0001 | - |
| 19.7368 | 750 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```