File size: 9,407 Bytes
b8f8716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[바다원] 깨끗한 돌김자반볶음 오리지널 40g x 5봉  (주)씨제이이엔엠'
- text: 쭈꾸미사령부 매운맛 300g 3 불타는 매운맛 원츄쟈챠
- text: 냉동 새우 튀김 300g 6 10 대용량 업소용 빵가루 왕새우튀김 코코넛쉬림프 360g (30미) 주식회사 더꽃게
- text: 잇투헤븐 팔당  오징어 매운 오징어 볶음 400g 쭈꾸미도사 쭈꾸미볶음 01.팔당불오징어400g 1 (주)잇투헤븐
- text: CJ 명가김 파래김 4g 16  트릴리어네어스
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.8689361702127659
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                              |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0   | <ul><li>'훈제연어(통) 약1.1kg 냉동연어 필렛 슬라이스 칠레산 HACCP 국내가공 화이트베어 화이트베어 훈제연어슬라이스 ±1.3kg 주식회사 셀피'</li><li>'안동간고등어 80g 10팩(5마리) 동의합니다_80g 10팩(5마리) 델리아마켓'</li><li>'제주 국내산 손질 고등어 2KG 한팩150g이상 11-12팩 3KG(16-19팩) 효명가'</li></ul> |
| 1.0   | <ul><li>'동원F&B 양반 김치맛 김부각 50g 1개 동원F&B 양반 김치맛 김부각 50g 1개 다팔아스토어'</li><li>'오뚜기 옛날 자른미역 50G  대성상사'</li><li>'환길산업 섬마을 해초샐러드 냉동 해초무침 2kg  제루통상'</li></ul>                                                                 |
| 0.0   | <ul><li>'Fish Tree 국물용멸치 1.3kg  케이원'</li><li>'Fish Tree 국물용 볶음용 멸치 1.3kg 1kg 뼈건강 깊은맛 육수 대멸치 좋은식감 국물용 멸치 1.3kg 유라너스'</li><li>'Fish Tree 국물용 멸치 1.3kg  이숍'</li></ul>                                                    |
| 3.0   | <ul><li>'랭킹수산 장어구이 혼합 140gx20팩(데리야끼10매콤10) -인증  제이원무역'</li><li>'올반 대왕 오징어튀김 400g  나라유통'</li><li>'바다愛한끼 이원일 연평도 꽃게 해물탕 760g 소스포함 2팩  (주)티알엔'</li></ul>                                                                 |
| 5.0   | <ul><li>'날치알 동림 담홍 레드 800G [800G][동림]날치알(골드)(팩) 주식회사 명품씨푸드'</li><li>'날치알 동림 담홍 레드 800G [800G][동림]날치알(레드)(팩) 주식회사 명품씨푸드'</li><li>'날치알 동림 담홍 레드 800G [800gG[코아]날치알[골드] 주식회사 명품씨푸드'</li></ul>                            |
| 4.0   | <ul><li>'명인오가네 연어장 250g  명인오가네몰'</li><li>'[나브연] 수제 간장 연어장 750g 덜짜게 주희종'</li><li>'[나브연] 수제 간장 연어장 500g 보통 주희종'</li></ul>                                                                                               |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.8689 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd11")
# Run inference
preds = model("CJ 명가김 파래김 4g 16입  트릴리어네어스")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.1164 | 23  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 25                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0233  | 1    | 0.4609        | -               |
| 1.1628  | 50   | 0.2116        | -               |
| 2.3256  | 100  | 0.0876        | -               |
| 3.4884  | 150  | 0.0442        | -               |
| 4.6512  | 200  | 0.0254        | -               |
| 5.8140  | 250  | 0.0133        | -               |
| 6.9767  | 300  | 0.0252        | -               |
| 8.1395  | 350  | 0.0176        | -               |
| 9.3023  | 400  | 0.0116        | -               |
| 10.4651 | 450  | 0.004         | -               |
| 11.6279 | 500  | 0.0231        | -               |
| 12.7907 | 550  | 0.0023        | -               |
| 13.9535 | 600  | 0.0017        | -               |
| 15.1163 | 650  | 0.0002        | -               |
| 16.2791 | 700  | 0.0001        | -               |
| 17.4419 | 750  | 0.0001        | -               |
| 18.6047 | 800  | 0.0001        | -               |
| 19.7674 | 850  | 0.0001        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->