File size: 11,224 Bytes
e962931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 지푸드박스 제이엔제이트레이드 코코엘 유기농 엑스트라버진 코코넛오일 필리핀산 415ml  헬시푸드몰
- text: CJ 백설 2 이상 구매시 할인 쿠폰 콩기름 식용유 대두유 18L 이츠웰 해표 오뚜기 롯데 식용유 말통 전국 최저가판매 식용유_오뚜기식용유
    주식회사 황금알에프앤오
- text: 올리타리아 엑스트라버진 올리브오일 1L  카비스
- text: 커클랜드 시그니춰 카놀라유 오일 2.83L 커클랜드 카놀라유2.83L 베이비파크
- text: 해표)고추맛기름 1.8L  에스엠(SM)식자재도매센터
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.9926900584795322
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                               |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0   | <ul><li>'사조해표 해표 고급유 2호 선물세트  풀문'</li><li>'CJ 백설 프리미엄 23호  형제종합물류'</li><li>'노브랜드 카놀라유 1L 노브랜드 카놀라유2L 주식회사 유일글로벌'</li></ul>                                                                             |
| 3.0   | <ul><li>'오타비오 아보카도오일 2L 이탈리아 코스트코  포시즌'</li><li>'건강한오늘 아보카도오일 500ml 건강한오늘 아보카도오일 500ml 잇츠설렘'</li><li>'아보퍼시픽 아보카도오일 1L 코스트코 1021670  굿데이'</li></ul>                                                     |
| 4.0   | <ul><li>'만능 올리브유 900ml 청정원 가을 식재료 추석 설날 제사 드레싱 샐러드 파스타  모두감동해'</li><li>'CJ제일제당 백설 압착 올리브유 900ml  준스토리'</li><li>'오로바일렌 엑스트라버진 올리브오일 아르베키나 500ml 500ml (주)운우'</li></ul>                                  |
| 7.0   | <ul><li>'사조 해표 포도씨유 250ML  주식회사 킴벌리마스타'</li><li>'오뚜기 프레스코 포도씨유 900ml  주식회사 삼부'</li><li>'대상 청정원 포도씨유 900ml  주식회사 당장만나'</li></ul>                                                                        |
| 2.0   | <ul><li>'국산 저온압착 들기름 300ml 국내산 아기들기름 저온압착 저온들기름 300ml 농부창고 영농조합법인'</li><li>'미식상회 생들기름 대용량 350ml  에프유니마켓'</li><li>'오뚜기 향긋한 들기름 160ml 1개  (주)하우'</li></ul>                                               |
| 1.0   | <ul><li>'대용량 업소용 식용유 해표 콩 식용유 18L 선택04)오뚜기 콩 식용유 18L 소유앳홈(SO:YOU@Home)'</li><li>'CJ 백설 식용유 1.8L 해표 식용유 1.8L 주식회사 경일종합식품 케이마트몰'</li><li>'CJ 해피스푼 콩식용유 18L 업소용 대용량 저가 식용유 광주 말통  주식회사 케이제이플러스'</li></ul> |
| 0.0   | <ul><li>'캘리포니아골드뉴트리션 슈퍼푸드 오가닉 엑스트라 버진 코코넛 오일 473ml 액상 코코넛기름  에스지샵(SGshop)'</li><li>'참미정 파기름 1.8L 대파 맛기름 참미정 마늘기름 1.8L 주식회사 팜'</li><li>'시아스 불맛기름 화유 500ml 시아스 불맛 고추기름 500ml (주) 식자재민족'</li></ul>        |
| 5.0   | <ul><li>'50년전통 대현상회 저온압착 참기름 350ml 돌려따는 BIG 아빠의주스 양배추사과즙 180 네오카트'</li><li>'오뚜기 고소한 참기름 450ml 오뚜기 고소한 참기름 320ml(병) 삼영유통'</li><li>'국산 저온압착 참기름 180ml 선물세트 이삭방앗간 당일착유 국산 저온압착 참기름_250ml 이삭방앗간'</li></ul> |
| 8.0   | <ul><li>'백설 해바라기씨유 500ml 당일 출발  (주) 바쿰'</li><li>'사조해표 해바라기유 500ml 1개  (주)해피상사'</li><li>'사조 해표 해바라기유 500ml (유통기한 24.01까지) ★유통기한임박특가(24년1월까지) 주식회사 킴벌리마스타'</li></ul>                                     |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.9927 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd12")
# Run inference
preds = model("올리타리아 엑스트라버진 올리브오일 1L  카비스")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 8.5356 | 22  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 50                    |
| 6.0   | 50                    |
| 7.0   | 50                    |
| 8.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0141  | 1    | 0.4844        | -               |
| 0.7042  | 50   | 0.3408        | -               |
| 1.4085  | 100  | 0.0769        | -               |
| 2.1127  | 150  | 0.0298        | -               |
| 2.8169  | 200  | 0.023         | -               |
| 3.5211  | 250  | 0.0251        | -               |
| 4.2254  | 300  | 0.0291        | -               |
| 4.9296  | 350  | 0.0156        | -               |
| 5.6338  | 400  | 0.0137        | -               |
| 6.3380  | 450  | 0.0029        | -               |
| 7.0423  | 500  | 0.0001        | -               |
| 7.7465  | 550  | 0.0001        | -               |
| 8.4507  | 600  | 0.0001        | -               |
| 9.1549  | 650  | 0.0           | -               |
| 9.8592  | 700  | 0.0           | -               |
| 10.5634 | 750  | 0.0           | -               |
| 11.2676 | 800  | 0.0           | -               |
| 11.9718 | 850  | 0.0           | -               |
| 12.6761 | 900  | 0.0           | -               |
| 13.3803 | 950  | 0.0           | -               |
| 14.0845 | 1000 | 0.0           | -               |
| 14.7887 | 1050 | 0.0           | -               |
| 15.4930 | 1100 | 0.0           | -               |
| 16.1972 | 1150 | 0.0           | -               |
| 16.9014 | 1200 | 0.0           | -               |
| 17.6056 | 1250 | 0.0           | -               |
| 18.3099 | 1300 | 0.0           | -               |
| 19.0141 | 1350 | 0.0           | -               |
| 19.7183 | 1400 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->