Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +253 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 네스프레소 버츄오 캡슐 머그 멜로지오 1Box (10캡슐) 아이스 라떼 03. 알티시오 제이유
|
14 |
+
- text: 맥심 티오피 스위트 아메리카노 200ml (주)디에이치솔루션
|
15 |
+
- text: 굿라이프365 스피아민트 삼각티백 50개입 익모초 삼각티백 50개입 주식회사 굿라이프365
|
16 |
+
- text: 칠성사이다 제로 ECO 무라벨 300ml 20pet [음료] 커피음료_맥심티오피심플리스무스로스티라떼360mlx20개 옐로우로켓
|
17 |
+
- text: 동서식품 kanu 미니 마일드 로스트 아메리카노 0.9g 카누디카페인 0.9g 100+20(120개입) 강유팩토리
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: metric
|
31 |
+
value: 0.6535632816801699
|
32 |
+
name: Metric
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 12 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 10.0 | <ul><li>'라인바싸 탄산수 레몬 500ml 20개 자몽 500ml 20개 에이치앤제이원'</li><li>'라인바싸 탄산수 파인애플 500ml 20입 1박스 (추가)+ 플레인 1박스 동아오츠카주식회사'</li><li>'코카콜라 씨그램 레몬 350mlx24페트 탄산수모음 15_트레비 라임 355mlx24CAN 주식회사대성에프앤비'</li></ul> |
|
66 |
+
| 8.0 | <ul><li>'맥심 아이스 커피믹스 110T +커피믹스 스틱 2T 콤부차_다농원 콤부차 세븐베리 20T+보틀 주식회사 경일종합식품 케이마트몰'</li><li>'[카누]카누 디카페인 미니 0.9g x 120개입 - 1개 HN 다크 로스트 0.9g 100+텀블러(사은품) 하나엔피그먼트'</li><li>'프렌치카페 카페믹스 스테비아 디카페인 10.3g x 100개입 대은상사'</li></ul> |
|
67 |
+
| 1.0 | <ul><li>'매일유업 매일우유 매일두유 99.9 190ml 12개 12개 테켄종합상사'</li><li>'매일유업 마이너피겨스 유기농 오트밀크 1L 주식회사 지룩'</li><li>'아몬드 브리즈 뉴트리플러스 프로틴 190ml 48개 스타일바이맘'</li></ul> |
|
68 |
+
| 6.0 | <ul><li>'이제부터 무가당 무설탕 생강진액 생강차 생강즙 생강청 1L ★이벤트★ 3+1(생강청)-박스없음_소비자가 태후자연식품영농조합법인'</li><li>'티젠 콤부차 파인애플 5g x 30개입 샤인머스켓(30개입) 엠비알글로벌'</li><li>'[오설록](신세계 본점)세작 80 g(잎차) 주식회사 에스에스지닷컴'</li></ul> |
|
69 |
+
| 5.0 | <ul><li>'파낙스 참다음 매실 원액 1.5L/6배희석 로쏘 레몬음료 베이스 1L (주) 이카루스'</li><li>'동원 덴마크 푸르티 포도 주스 120mL x 24개 블라썸플라워'</li><li>'썬업 과���야채샐러드 그린 200ml x 24팩 과일야채 샐러드 레드 200ml x 24팩 하니컴퍼니'</li></ul> |
|
70 |
+
| 9.0 | <ul><li>'허쉬 코코아 가루 분말 226g W-00652_허쉬코코아파우더226g(파손) 월푸드'</li><li>'기라델리 프리미엄 핫코코아믹스 초콜렛 907g X 1박스(4개) 고고커피'</li><li>'Nestle Hot Cocoa 핫 코코아 믹스 30개 0.28온스 207799 무설탕 무지방_2개들이 팩 더블스토어'</li></ul> |
|
71 |
+
| 4.0 | <ul><li>'코카콜라 태양의 식후비법 W차 500ml (주)디에이치솔루션'</li><li>'광동 힘찬하루 헛개차 1.5L 1개 대패트_게토레이 레몬 1.5L 12개 대영상사'</li><li>'웰그린 스위츠 복숭아 녹차 음료 340ml 티트라 레몬그린티 제로 500mlX24PET 브론스코리아(주)'</li></ul> |
|
72 |
+
| 0.0 | <ul><li>'레드불 에너지 드링크 355ml (6개) 카페인 타우린 비타민 알프스 워터 대량 구매 노건'</li><li>'청정원 홍초 석류 1.5L 홍초 블루베리 1.5L (주) 이카루스'</li><li>'청정원 홍초 자몽 900ml 아이스티_티오 아이스티 레몬맛40T 주식회사 경일종합식품 케이마트몰'</li></ul> |
|
73 |
+
| 7.0 | <ul><li>'동서 티오 아이스티 복숭아 70T +커피믹스 스틱 2T 콤부차_다농원 콤부차 리치 20T+보틀 주식회사 경일종합식품 케이마트몰'</li><li>'립톤 아이스티 복숭아 770g 레몬 770g_자몽 아이스티 키트(2개입) 유니레버코리아 (주)'</li><li>'술픽 하이트진로 토닉워터 600ml 대용량 술벙커 주식회사 농업회사법인 이천지점'</li></ul> |
|
74 |
+
| 11.0 | <ul><li>'포모나 블루베리스무디 2kg 블루베리농축액 (주)제이제이푸드시스템'</li><li>'베오베 오곡 파우더 1kg 라떼 곡물 미숫가루 분말 티에이치커피 티에이치커피'</li><li>'타코 복숭아 아이스티 /선택 08.블루베리라떼870g 주식회사 커피바바'</li></ul> |
|
75 |
+
| 3.0 | <ul><li>'[매니저배송] MPRO 장&면역+피부 (5개입) (주)에치와이'</li><li>'요플레 닥터캡슐 베리믹스 130mLx4개/1000배/냉장무배 대명유통'</li><li>'매일바이오 알로에 120g 12개_냉장 매일유업 주식회사'</li></ul> |
|
76 |
+
| 2.0 | <ul><li>'화인바이오 지리산 물하나 2L X 6개 글로벌웨이브'</li><li>'하이트 천연광천수 미네랄 석수 무라벨 500ml 20pet ◇ 석수 무라벨 500ml 20pet 주식회사 부산종합유통'</li><li>'아이시스8.0 300ml x 1BOX(20PET) 생수 아이시스8.0 200ml(40p) (주)하나유통'</li></ul> |
|
77 |
+
|
78 |
+
## Evaluation
|
79 |
+
|
80 |
+
### Metrics
|
81 |
+
| Label | Metric |
|
82 |
+
|:--------|:-------|
|
83 |
+
| **all** | 0.6536 |
|
84 |
+
|
85 |
+
## Uses
|
86 |
+
|
87 |
+
### Direct Use for Inference
|
88 |
+
|
89 |
+
First install the SetFit library:
|
90 |
+
|
91 |
+
```bash
|
92 |
+
pip install setfit
|
93 |
+
```
|
94 |
+
|
95 |
+
Then you can load this model and run inference.
|
96 |
+
|
97 |
+
```python
|
98 |
+
from setfit import SetFitModel
|
99 |
+
|
100 |
+
# Download from the 🤗 Hub
|
101 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_fd14")
|
102 |
+
# Run inference
|
103 |
+
preds = model("맥심 티오피 스위트 아메리카노 200ml (주)디에이치솔루션")
|
104 |
+
```
|
105 |
+
|
106 |
+
<!--
|
107 |
+
### Downstream Use
|
108 |
+
|
109 |
+
*List how someone could finetune this model on their own dataset.*
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
### Out-of-Scope Use
|
114 |
+
|
115 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
116 |
+
-->
|
117 |
+
|
118 |
+
<!--
|
119 |
+
## Bias, Risks and Limitations
|
120 |
+
|
121 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
122 |
+
-->
|
123 |
+
|
124 |
+
<!--
|
125 |
+
### Recommendations
|
126 |
+
|
127 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
128 |
+
-->
|
129 |
+
|
130 |
+
## Training Details
|
131 |
+
|
132 |
+
### Training Set Metrics
|
133 |
+
| Training set | Min | Median | Max |
|
134 |
+
|:-------------|:----|:-------|:----|
|
135 |
+
| Word count | 4 | 9.805 | 20 |
|
136 |
+
|
137 |
+
| Label | Training Sample Count |
|
138 |
+
|:------|:----------------------|
|
139 |
+
| 0.0 | 50 |
|
140 |
+
| 1.0 | 50 |
|
141 |
+
| 2.0 | 50 |
|
142 |
+
| 3.0 | 50 |
|
143 |
+
| 4.0 | 50 |
|
144 |
+
| 5.0 | 50 |
|
145 |
+
| 6.0 | 50 |
|
146 |
+
| 7.0 | 50 |
|
147 |
+
| 8.0 | 50 |
|
148 |
+
| 9.0 | 50 |
|
149 |
+
| 10.0 | 50 |
|
150 |
+
| 11.0 | 50 |
|
151 |
+
|
152 |
+
### Training Hyperparameters
|
153 |
+
- batch_size: (512, 512)
|
154 |
+
- num_epochs: (20, 20)
|
155 |
+
- max_steps: -1
|
156 |
+
- sampling_strategy: oversampling
|
157 |
+
- num_iterations: 40
|
158 |
+
- body_learning_rate: (2e-05, 2e-05)
|
159 |
+
- head_learning_rate: 2e-05
|
160 |
+
- loss: CosineSimilarityLoss
|
161 |
+
- distance_metric: cosine_distance
|
162 |
+
- margin: 0.25
|
163 |
+
- end_to_end: False
|
164 |
+
- use_amp: False
|
165 |
+
- warmup_proportion: 0.1
|
166 |
+
- seed: 42
|
167 |
+
- eval_max_steps: -1
|
168 |
+
- load_best_model_at_end: False
|
169 |
+
|
170 |
+
### Training Results
|
171 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
172 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
173 |
+
| 0.0106 | 1 | 0.3763 | - |
|
174 |
+
| 0.5319 | 50 | 0.3216 | - |
|
175 |
+
| 1.0638 | 100 | 0.1166 | - |
|
176 |
+
| 1.5957 | 150 | 0.0863 | - |
|
177 |
+
| 2.1277 | 200 | 0.0548 | - |
|
178 |
+
| 2.6596 | 250 | 0.0559 | - |
|
179 |
+
| 3.1915 | 300 | 0.0323 | - |
|
180 |
+
| 3.7234 | 350 | 0.0301 | - |
|
181 |
+
| 4.2553 | 400 | 0.0191 | - |
|
182 |
+
| 4.7872 | 450 | 0.0127 | - |
|
183 |
+
| 5.3191 | 500 | 0.0059 | - |
|
184 |
+
| 5.8511 | 550 | 0.0003 | - |
|
185 |
+
| 6.3830 | 600 | 0.0002 | - |
|
186 |
+
| 6.9149 | 650 | 0.0001 | - |
|
187 |
+
| 7.4468 | 700 | 0.0001 | - |
|
188 |
+
| 7.9787 | 750 | 0.0001 | - |
|
189 |
+
| 8.5106 | 800 | 0.0001 | - |
|
190 |
+
| 9.0426 | 850 | 0.0001 | - |
|
191 |
+
| 9.5745 | 900 | 0.0001 | - |
|
192 |
+
| 10.1064 | 950 | 0.0001 | - |
|
193 |
+
| 10.6383 | 1000 | 0.0001 | - |
|
194 |
+
| 11.1702 | 1050 | 0.0001 | - |
|
195 |
+
| 11.7021 | 1100 | 0.0001 | - |
|
196 |
+
| 12.2340 | 1150 | 0.0001 | - |
|
197 |
+
| 12.7660 | 1200 | 0.0001 | - |
|
198 |
+
| 13.2979 | 1250 | 0.0 | - |
|
199 |
+
| 13.8298 | 1300 | 0.0001 | - |
|
200 |
+
| 14.3617 | 1350 | 0.0001 | - |
|
201 |
+
| 14.8936 | 1400 | 0.0001 | - |
|
202 |
+
| 15.4255 | 1450 | 0.0 | - |
|
203 |
+
| 15.9574 | 1500 | 0.0 | - |
|
204 |
+
| 16.4894 | 1550 | 0.0 | - |
|
205 |
+
| 17.0213 | 1600 | 0.0 | - |
|
206 |
+
| 17.5532 | 1650 | 0.0 | - |
|
207 |
+
| 18.0851 | 1700 | 0.0 | - |
|
208 |
+
| 18.6170 | 1750 | 0.0 | - |
|
209 |
+
| 19.1489 | 1800 | 0.0 | - |
|
210 |
+
| 19.6809 | 1850 | 0.0 | - |
|
211 |
+
|
212 |
+
### Framework Versions
|
213 |
+
- Python: 3.10.12
|
214 |
+
- SetFit: 1.1.0.dev0
|
215 |
+
- Sentence Transformers: 3.1.1
|
216 |
+
- Transformers: 4.46.1
|
217 |
+
- PyTorch: 2.4.0+cu121
|
218 |
+
- Datasets: 2.20.0
|
219 |
+
- Tokenizers: 0.20.0
|
220 |
+
|
221 |
+
## Citation
|
222 |
+
|
223 |
+
### BibTeX
|
224 |
+
```bibtex
|
225 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
226 |
+
doi = {10.48550/ARXIV.2209.11055},
|
227 |
+
url = {https://arxiv.org/abs/2209.11055},
|
228 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
229 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
230 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
231 |
+
publisher = {arXiv},
|
232 |
+
year = {2022},
|
233 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
234 |
+
}
|
235 |
+
```
|
236 |
+
|
237 |
+
<!--
|
238 |
+
## Glossary
|
239 |
+
|
240 |
+
*Clearly define terms in order to be accessible across audiences.*
|
241 |
+
-->
|
242 |
+
|
243 |
+
<!--
|
244 |
+
## Model Card Authors
|
245 |
+
|
246 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
247 |
+
-->
|
248 |
+
|
249 |
+
<!--
|
250 |
+
## Model Card Contact
|
251 |
+
|
252 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
253 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_fd",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4587bed81fd0fd02cee91393cbc0d4451fee74a425cabda93fb99c70c5d6632
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:145382b268b54384d5c425cb5c70809198e257ac6a1311907a437ed3ee1728e6
|
3 |
+
size 74727
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|