mini1013 commited on
Commit
91167ab
·
verified ·
1 Parent(s): 020839a

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 네스프레소 버츄오 캡슐 머그 멜로지오 1Box (10캡슐) 아이스 라떼 03. 알티시오 제이유
14
+ - text: 맥심 티오피 스위트 아메리카노 200ml (주)디에이치솔루션
15
+ - text: 굿라이프365 스피아민트 삼각티백 50개입 익모초 삼각티백 50개입 주식회사 굿라이프365
16
+ - text: 칠성사이다 제로 ECO 무라벨 300ml 20pet [음료] 커피음료_맥심티오피심플리스무스로스티라떼360mlx20개 옐로우로켓
17
+ - text: 동서식품 kanu 미니 마일드 로스트 아메리카노 0.9g 카누디카페인 0.9g 100+20(120개입) 강유팩토리
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.6535632816801699
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 12 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 10.0 | <ul><li>'라인바싸 탄산수 레몬 500ml 20개 자몽 500ml 20개 에이치앤제이원'</li><li>'라인바싸 탄산수 파인애플 500ml 20입 1박스 (추가)+ 플레인 1박스 동아오츠카주식회사'</li><li>'코카콜라 씨그램 레몬 350mlx24페트 탄산수모음 15_트레비 라임 355mlx24CAN 주식회사대성에프앤비'</li></ul> |
66
+ | 8.0 | <ul><li>'맥심 아이스 커피믹스 110T +커피믹스 스틱 2T 콤부차_다농원 콤부차 세븐베리 20T+보틀 주식회사 경일종합식품 케이마트몰'</li><li>'[카누]카누 디카페인 미니 0.9g x 120개입 - 1개 HN 다크 로스트 0.9g 100+텀블러(사은품) 하나엔피그먼트'</li><li>'프렌치카페 카페믹스 스테비아 디카페인 10.3g x 100개입 대은상사'</li></ul> |
67
+ | 1.0 | <ul><li>'매일유업 매일우유 매일두유 99.9 190ml 12개 12개 테켄종합상사'</li><li>'매일유업 마이너피겨스 유기농 오트밀크 1L 주식회사 지룩'</li><li>'아몬드 브리즈 뉴트리플러스 프로틴 190ml 48개 스타일바이맘'</li></ul> |
68
+ | 6.0 | <ul><li>'이제부터 무가당 무설탕 생강진액 생강차 생강즙 생강청 1L ★이벤트★ 3+1(생강청)-박스없음_소비자가 태후자연식품영농조합법인'</li><li>'티젠 콤부차 파인애플 5g x 30개입 샤인머스켓(30개입) 엠비알글로벌'</li><li>'[오설록](신세계 본점)세작 80 g(잎차) 주식회사 에스에스지닷컴'</li></ul> |
69
+ | 5.0 | <ul><li>'파낙스 참다음 매실 원액 1.5L/6배희석 로쏘 레몬음료 베이스 1L (주) 이카루스'</li><li>'동원 덴마크 푸르티 포도 주스 120mL x 24개 블라썸플라워'</li><li>'썬업 과���야채샐러드 그린 200ml x 24팩 과일야채 샐러드 레드 200ml x 24팩 하니컴퍼니'</li></ul> |
70
+ | 9.0 | <ul><li>'허쉬 코코아 가루 분말 226g W-00652_허쉬코코아파우더226g(파손) 월푸드'</li><li>'기라델리 프리미엄 핫코코아믹스 초콜렛 907g X 1박스(4개) 고고커피'</li><li>'Nestle Hot Cocoa 핫 코코아 믹스 30개 0.28온스 207799 무설탕 무지방_2개들이 팩 더블스토어'</li></ul> |
71
+ | 4.0 | <ul><li>'코카콜라 태양의 식후비법 W차 500ml (주)디에이치솔루션'</li><li>'광동 힘찬하루 헛개차 1.5L 1개 대패트_게토레이 레몬 1.5L 12개 대영상사'</li><li>'웰그린 스위츠 복숭아 녹차 음료 340ml 티트라 레몬그린티 제로 500mlX24PET 브론스코리아(주)'</li></ul> |
72
+ | 0.0 | <ul><li>'레드불 에너지 드링크 355ml (6개) 카페인 타우린 비타민 알프스 워터 대량 구매 노건'</li><li>'청정원 홍초 석류 1.5L 홍초 블루베리 1.5L (주) 이카루스'</li><li>'청정원 홍초 자몽 900ml 아이스티_티오 아이스티 레몬맛40T 주식회사 경일종합식품 케이마트몰'</li></ul> |
73
+ | 7.0 | <ul><li>'동서 티오 아이스티 복숭아 70T +커피믹스 스틱 2T 콤부차_다농원 콤부차 리치 20T+보틀 주식회사 경일종합식품 케이마트몰'</li><li>'립톤 아이스티 복숭아 770g 레몬 770g_자몽 아이스티 키트(2개입) 유니레버코리아 (주)'</li><li>'술픽 하이트진로 토닉워터 600ml 대용량 술벙커 주식회사 농업회사법인 이천지점'</li></ul> |
74
+ | 11.0 | <ul><li>'포모나 블루베리스무디 2kg 블루베리농축액 (주)제이제이푸드시스템'</li><li>'베오베 오곡 파우더 1kg 라떼 곡물 미숫가루 분말 티에이치커피 티에이치커피'</li><li>'타코 복숭아 아이스티 /선택 08.블루베리라떼870g 주식회사 커피바바'</li></ul> |
75
+ | 3.0 | <ul><li>'[매니저배송] MPRO 장&면역+피부 (5개입) (주)에치와이'</li><li>'요플레 닥터캡슐 베리믹스 130mLx4개/1000배/냉장무배 대명유통'</li><li>'매일바이오 알로에 120g 12개_냉장 매일유업 주식회사'</li></ul> |
76
+ | 2.0 | <ul><li>'화인바이오 지리산 물하나 2L X 6개 글로벌웨이브'</li><li>'하이트 천연광천수 미네랄 석수 무라벨 500ml 20pet ◇ 석수 무라벨 500ml 20pet 주식회사 부산종합유통'</li><li>'아이시스8.0 300ml x 1BOX(20PET) 생수 아이시스8.0 200ml(40p) (주)하나유통'</li></ul> |
77
+
78
+ ## Evaluation
79
+
80
+ ### Metrics
81
+ | Label | Metric |
82
+ |:--------|:-------|
83
+ | **all** | 0.6536 |
84
+
85
+ ## Uses
86
+
87
+ ### Direct Use for Inference
88
+
89
+ First install the SetFit library:
90
+
91
+ ```bash
92
+ pip install setfit
93
+ ```
94
+
95
+ Then you can load this model and run inference.
96
+
97
+ ```python
98
+ from setfit import SetFitModel
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fd14")
102
+ # Run inference
103
+ preds = model("맥심 티오피 스위트 아메리카노 200ml (주)디에이치솔루션")
104
+ ```
105
+
106
+ <!--
107
+ ### Downstream Use
108
+
109
+ *List how someone could finetune this model on their own dataset.*
110
+ -->
111
+
112
+ <!--
113
+ ### Out-of-Scope Use
114
+
115
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
116
+ -->
117
+
118
+ <!--
119
+ ## Bias, Risks and Limitations
120
+
121
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
122
+ -->
123
+
124
+ <!--
125
+ ### Recommendations
126
+
127
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
128
+ -->
129
+
130
+ ## Training Details
131
+
132
+ ### Training Set Metrics
133
+ | Training set | Min | Median | Max |
134
+ |:-------------|:----|:-------|:----|
135
+ | Word count | 4 | 9.805 | 20 |
136
+
137
+ | Label | Training Sample Count |
138
+ |:------|:----------------------|
139
+ | 0.0 | 50 |
140
+ | 1.0 | 50 |
141
+ | 2.0 | 50 |
142
+ | 3.0 | 50 |
143
+ | 4.0 | 50 |
144
+ | 5.0 | 50 |
145
+ | 6.0 | 50 |
146
+ | 7.0 | 50 |
147
+ | 8.0 | 50 |
148
+ | 9.0 | 50 |
149
+ | 10.0 | 50 |
150
+ | 11.0 | 50 |
151
+
152
+ ### Training Hyperparameters
153
+ - batch_size: (512, 512)
154
+ - num_epochs: (20, 20)
155
+ - max_steps: -1
156
+ - sampling_strategy: oversampling
157
+ - num_iterations: 40
158
+ - body_learning_rate: (2e-05, 2e-05)
159
+ - head_learning_rate: 2e-05
160
+ - loss: CosineSimilarityLoss
161
+ - distance_metric: cosine_distance
162
+ - margin: 0.25
163
+ - end_to_end: False
164
+ - use_amp: False
165
+ - warmup_proportion: 0.1
166
+ - seed: 42
167
+ - eval_max_steps: -1
168
+ - load_best_model_at_end: False
169
+
170
+ ### Training Results
171
+ | Epoch | Step | Training Loss | Validation Loss |
172
+ |:-------:|:----:|:-------------:|:---------------:|
173
+ | 0.0106 | 1 | 0.3763 | - |
174
+ | 0.5319 | 50 | 0.3216 | - |
175
+ | 1.0638 | 100 | 0.1166 | - |
176
+ | 1.5957 | 150 | 0.0863 | - |
177
+ | 2.1277 | 200 | 0.0548 | - |
178
+ | 2.6596 | 250 | 0.0559 | - |
179
+ | 3.1915 | 300 | 0.0323 | - |
180
+ | 3.7234 | 350 | 0.0301 | - |
181
+ | 4.2553 | 400 | 0.0191 | - |
182
+ | 4.7872 | 450 | 0.0127 | - |
183
+ | 5.3191 | 500 | 0.0059 | - |
184
+ | 5.8511 | 550 | 0.0003 | - |
185
+ | 6.3830 | 600 | 0.0002 | - |
186
+ | 6.9149 | 650 | 0.0001 | - |
187
+ | 7.4468 | 700 | 0.0001 | - |
188
+ | 7.9787 | 750 | 0.0001 | - |
189
+ | 8.5106 | 800 | 0.0001 | - |
190
+ | 9.0426 | 850 | 0.0001 | - |
191
+ | 9.5745 | 900 | 0.0001 | - |
192
+ | 10.1064 | 950 | 0.0001 | - |
193
+ | 10.6383 | 1000 | 0.0001 | - |
194
+ | 11.1702 | 1050 | 0.0001 | - |
195
+ | 11.7021 | 1100 | 0.0001 | - |
196
+ | 12.2340 | 1150 | 0.0001 | - |
197
+ | 12.7660 | 1200 | 0.0001 | - |
198
+ | 13.2979 | 1250 | 0.0 | - |
199
+ | 13.8298 | 1300 | 0.0001 | - |
200
+ | 14.3617 | 1350 | 0.0001 | - |
201
+ | 14.8936 | 1400 | 0.0001 | - |
202
+ | 15.4255 | 1450 | 0.0 | - |
203
+ | 15.9574 | 1500 | 0.0 | - |
204
+ | 16.4894 | 1550 | 0.0 | - |
205
+ | 17.0213 | 1600 | 0.0 | - |
206
+ | 17.5532 | 1650 | 0.0 | - |
207
+ | 18.0851 | 1700 | 0.0 | - |
208
+ | 18.6170 | 1750 | 0.0 | - |
209
+ | 19.1489 | 1800 | 0.0 | - |
210
+ | 19.6809 | 1850 | 0.0 | - |
211
+
212
+ ### Framework Versions
213
+ - Python: 3.10.12
214
+ - SetFit: 1.1.0.dev0
215
+ - Sentence Transformers: 3.1.1
216
+ - Transformers: 4.46.1
217
+ - PyTorch: 2.4.0+cu121
218
+ - Datasets: 2.20.0
219
+ - Tokenizers: 0.20.0
220
+
221
+ ## Citation
222
+
223
+ ### BibTeX
224
+ ```bibtex
225
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
226
+ doi = {10.48550/ARXIV.2209.11055},
227
+ url = {https://arxiv.org/abs/2209.11055},
228
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
229
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
230
+ title = {Efficient Few-Shot Learning Without Prompts},
231
+ publisher = {arXiv},
232
+ year = {2022},
233
+ copyright = {Creative Commons Attribution 4.0 International}
234
+ }
235
+ ```
236
+
237
+ <!--
238
+ ## Glossary
239
+
240
+ *Clearly define terms in order to be accessible across audiences.*
241
+ -->
242
+
243
+ <!--
244
+ ## Model Card Authors
245
+
246
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
247
+ -->
248
+
249
+ <!--
250
+ ## Model Card Contact
251
+
252
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
253
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fd",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4587bed81fd0fd02cee91393cbc0d4451fee74a425cabda93fb99c70c5d6632
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:145382b268b54384d5c425cb5c70809198e257ac6a1311907a437ed3ee1728e6
3
+ size 74727
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff