File size: 11,142 Bytes
4936439 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 한끼스토리 딸기드레싱 500g 10개 한울마켓
- text: 맷돌표 뉴슈가 60g/ 20개 (주)디엔제이
- text: 하회마을 쌈장 14kg 업소용 대용량 물레푸드
- text: 화가장가평발효과학 국산콩청국장 120g16팩 화가장 주식회사
- text: 춘장(삼화 300g) 4개 식자재 업소용 대용량 더착한컴퍼니
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8727670433831571
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.0 | <ul><li>'아이스티음료 복숭아음료 립톤 음료 베이스 가루 업소 대용량 907g 온달이'</li><li>'죽순캔(진양 400g)X4 진양 400g)X4 프렌들리 컴퍼니'</li><li>'커피믹스(맥심 2.04k) X6 모카골드 오구오구(5959)'</li></ul> |
| 0.0 | <ul><li>'청정원 장아찌 간장소스 1.7L 착한사람들'</li><li>'몽고 송표 골드 간장 1.5L 몽고식품(주)창원1공장'</li><li>'샘표 맛간장 조림볶음용 보니따엠'</li></ul> |
| 3.0 | <ul><li>'으뜸 낫또 제주콩 생나또 53 g 특허기술로 만든 생 청국장 실이많은 생낫또 24 팩 혼합구성_생낫또 18 개 + 하나또 18 개 (주)으뜸엘엔에스'</li><li>'국산콩100g 12개 일본장인전수 수제 가정생낫또 나또 사또 검정콩 쥐눈이 대용량 검정콩100g 10개_간장360ml 가정생청국장'</li><li>'청정 제주콩 생 낫또 36개 주식회사 네오넥스글로벌'</li></ul> |
| 4.0 | <ul><li>'CJ 해찬들 그대로 된장찌개양념 450gx3 고깃집 된장찌개용 차돌 조개 코스트코 1021460 4 바지락꽃게 3개 까까아일랜드'</li><li>'[2+1] 해찬들 물로만 끓여도 차돌 된장찌개 양념 450G 물로만 끓여도 차돌 된장찌개 450Gx3 메가글로벌001'</li><li>'[샘표]샘표 토장 900g 티디티유통'</li></ul> |
| 1.0 | <ul><li>'안동제비원 고추장 담그기 세트 (약7kg)[33628066] (주)엔에스쇼핑'</li><li>'CJ 해찬들 태양초 알찬 고추장 6.5kg 리브웨이'</li><li>'청정원순창 현미 태양초 찰고추장, 2kg, 1개 2kg × 1개 2kg x 1개 카리스광클'</li></ul> |
| 6.0 | <ul><li>'샘표 쌈토장 450g 대성상사'</li><li>'참고을 신선한 쌈장 14kg 맛있는 쌈장 대용량 업소용 쌈장 지함 순창궁 양념 쌈장 14kg 우성수산'</li><li>'청정원 순창 쌈장골드 4.8kg 주식회사 푸드공공칠'</li></ul> |
| 5.0 | <ul><li>'콩마실 국산 메주 가루 (1kg 국산콩100%, 고추장용) 콩마실'</li><li>'고령 국산 메주 전통 국산콩메주 세트 5kg 장현식품'</li><li>'100%국산콩으로 만든 순창 전통메주 1덩이 1.2kg내외 열정농부'</li></ul> |
| 7.0 | <ul><li>'고추명가 비빔냉면 소스 2kg 냉면 양념장 비냉 비빔장 국수 양념 다대기 식당업소용 대용량 이도'</li><li>'CJ 손맛 다담 안동찜닭 양념 220g 분식 식당 식자재 감칠맛 풍미 맛다시 제이지무역'</li><li>'연안식당 부추꼬막장 150g 앙념 비빔장 꼬막비빔밥 밥도둑 꼬막장 넉넉한 2인분 주식회사 디딤'</li></ul> |
| 2.0 | <ul><li>'오뚜기 가쓰오부시 장국 360ml 외 7종 01_가쓰오부시 장국 360ml 주식회사 삼부'</li><li>'면사랑 프리미엄 메밀장국 1.8L 모밀 소바 육수 장국 국수 찌개 만능 다시 문화벙커'</li><li>'뽕보감 조청 1000g 철원군농업기술센터'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.8728 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd15")
# Run inference
preds = model("맷돌표 뉴슈가 60g/ 20개 (주)디엔제이")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.8578 | 26 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
| 5.0 | 22 |
| 6.0 | 50 |
| 7.0 | 50 |
| 8.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0152 | 1 | 0.3728 | - |
| 0.7576 | 50 | 0.2769 | - |
| 1.5152 | 100 | 0.1245 | - |
| 2.2727 | 150 | 0.0532 | - |
| 3.0303 | 200 | 0.0532 | - |
| 3.7879 | 250 | 0.0385 | - |
| 4.5455 | 300 | 0.0052 | - |
| 5.3030 | 350 | 0.0025 | - |
| 6.0606 | 400 | 0.0004 | - |
| 6.8182 | 450 | 0.0004 | - |
| 7.5758 | 500 | 0.0005 | - |
| 8.3333 | 550 | 0.0007 | - |
| 9.0909 | 600 | 0.0002 | - |
| 9.8485 | 650 | 0.0002 | - |
| 10.6061 | 700 | 0.0001 | - |
| 11.3636 | 750 | 0.0001 | - |
| 12.1212 | 800 | 0.0001 | - |
| 12.8788 | 850 | 0.0001 | - |
| 13.6364 | 900 | 0.0001 | - |
| 14.3939 | 950 | 0.0001 | - |
| 15.1515 | 1000 | 0.0001 | - |
| 15.9091 | 1050 | 0.0001 | - |
| 16.6667 | 1100 | 0.0001 | - |
| 17.4242 | 1150 | 0.0001 | - |
| 18.1818 | 1200 | 0.0001 | - |
| 18.9394 | 1250 | 0.0 | - |
| 19.6970 | 1300 | 0.0001 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |