Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +233 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 1883 시럽 1000ml 바닐라 3병 Vanilla 바닐라 달콤한푸린
|
14 |
+
- text: 모닌 바닐라 시럽 1000ml MONIN 홈카페 커피시럽 로스티드 헤이즐넛 700ml 아르타
|
15 |
+
- text: 리고 초코 시럽 585g 2개세트 (주)비앤씨인터내셔널
|
16 |
+
- text: 옳곡 국내산 피넛버터 땅콩잼 무첨가 땅콩버터 200g 크런치 스무스 03.스무스+크런치 조은스토어2
|
17 |
+
- text: 페레로 누텔라 헤이즐넛 코코아 스프레드 370g 5개 누텔라 헤이즐넛 코코아 스프레드 370g 5개 홈마트
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: metric
|
31 |
+
value: 0.6548139319295457
|
32 |
+
name: Metric
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 8 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 6.0 | <ul><li>'아이언맥스 프로틴 쨈 스프레드 초코 아몬드 250g 2팩 IronMaxx 블레스윤'</li><li>'페레로 누텔라 헤이즐넛 코코아 스프레드 370g 3개 누텔라 헤이즐넛 코코아 스프레드 370g 3개 홈마트'</li><li>'누텔라 헤이즐넛 코코아 스프레드 370g x 2개 [라면] 봉지라면_오뚜기 짜슐랭 145g 20개 옐로우로켓'</li></ul> |
|
66 |
+
| 1.0 | <ul><li>'[가당딸기] 국산 냉동 가당딸기 2kg 아이스베리 (6개/박스) 주식회사 커피바바'</li><li>'복음자리 진심의 딸기 1kg 딸기청 🍓진심의 딸기 1kg 5개🍓 담다'</li><li>'초록원 과일잼 1kg x 2개 딸기잼 1021653 딸기잼1kg 블루베리잼1kg_파인애플망고잼1kg 앤디월드'</li></ul> |
|
67 |
+
| 5.0 | <ul><li>'Torani 무설탕 소스, 다크 초콜릿, 1.9L(64온스) 화이트 초콜릿_64 Fl Oz (Pack of 1) 저무리5'</li><li>'모카믹스 다크소스 초콜렛 2kg 1박스 6개 초코소스 엠씨컴퍼니 (주)'</li><li>'매일유업 테너소스 초콜렛 1.35kg 1병 카라멜 1.35kg 티피컨테이너'</li></ul> |
|
68 |
+
| 4.0 | <ul><li>'오뚜기 맛있는 사과쨈 300G 홈카페 식재료 토스트 브런치 캠핑 아이들 간식 봄날스토어'</li><li>'오뚜기 Light sugar 사과쨈 290g 4개 007스테이지스'</li><li>'[달콤한 맛있는] 밀크스프레드 얼그레이 235g [블루베리 딸기 사과 포도 버터맛] 레인보우'</li></ul> |
|
69 |
+
| 0.0 | <ul><li>'포모나 얼그레이 하이볼 시럽 밀크티 홍차 1000ml 06-포모나 카라멜 시럽 주식회사 커피창고'</li><li>'프프프베이커리 빵에 발라먹는 버터스프레드 얼그레이 맛 【1개】 허니 데칼컴퍼니(Decal Company)'</li><li>'매일 테너베이스 청포도 에이드 스무디 농축액 1.2kg 1022147 오렌지 1.2kg 가이던스'</li></ul> |
|
70 |
+
| 3.0 | <ul><li>'LB 메이플시럽189ml(병) (N2) 주식회사 에스에스지닷컴'</li><li>'마누카 헬스 Manuka health 마누카 허니 MGO 250+ 시럽 100ml K&G GmbH'</li><li>'시럽 초콜렛 네이처 컨트리 라몬제이'</li></ul> |
|
71 |
+
| 7.0 | <ul><li>'커피시럽 카페시럽 1.5L x2병 대상 롯데 파우더 커피 대상 로즈버드 그린티 파우더 500g 가루녹차 하늘담아'</li><li>'토라니 카라멜 미니 토핑용소스 468g / 카라멜마끼야또 카라멜라떼 (주)오케이푸드'</li><li>'1883 헤이즐넛시럽 1883 라임 시럽 1000ml 엔에프 컴퍼니'</li></ul> |
|
72 |
+
| 2.0 | <ul><li>'[신세계 가공](신세계본점)리고땅콩버터크리미 462g 주식회사 에스에스지닷컴'</li><li>'스키피 땅콩버터1.36kg 스키피 크리미 땅콩버터 2.27kg 두두유통'</li><li>'피비핏 버터 오리지널 파우더 피넛 프리 프로틴 글루텐 850g 에코프리'</li></ul> |
|
73 |
+
|
74 |
+
## Evaluation
|
75 |
+
|
76 |
+
### Metrics
|
77 |
+
| Label | Metric |
|
78 |
+
|:--------|:-------|
|
79 |
+
| **all** | 0.6548 |
|
80 |
+
|
81 |
+
## Uses
|
82 |
+
|
83 |
+
### Direct Use for Inference
|
84 |
+
|
85 |
+
First install the SetFit library:
|
86 |
+
|
87 |
+
```bash
|
88 |
+
pip install setfit
|
89 |
+
```
|
90 |
+
|
91 |
+
Then you can load this model and run inference.
|
92 |
+
|
93 |
+
```python
|
94 |
+
from setfit import SetFitModel
|
95 |
+
|
96 |
+
# Download from the 🤗 Hub
|
97 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_fd16")
|
98 |
+
# Run inference
|
99 |
+
preds = model("리고 초코 시럽 585g 2개세트 (주)비앤씨인터내셔널")
|
100 |
+
```
|
101 |
+
|
102 |
+
<!--
|
103 |
+
### Downstream Use
|
104 |
+
|
105 |
+
*List how someone could finetune this model on their own dataset.*
|
106 |
+
-->
|
107 |
+
|
108 |
+
<!--
|
109 |
+
### Out-of-Scope Use
|
110 |
+
|
111 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
112 |
+
-->
|
113 |
+
|
114 |
+
<!--
|
115 |
+
## Bias, Risks and Limitations
|
116 |
+
|
117 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
118 |
+
-->
|
119 |
+
|
120 |
+
<!--
|
121 |
+
### Recommendations
|
122 |
+
|
123 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
124 |
+
-->
|
125 |
+
|
126 |
+
## Training Details
|
127 |
+
|
128 |
+
### Training Set Metrics
|
129 |
+
| Training set | Min | Median | Max |
|
130 |
+
|:-------------|:----|:--------|:----|
|
131 |
+
| Word count | 4 | 10.8025 | 29 |
|
132 |
+
|
133 |
+
| Label | Training Sample Count |
|
134 |
+
|:------|:----------------------|
|
135 |
+
| 0.0 | 50 |
|
136 |
+
| 1.0 | 50 |
|
137 |
+
| 2.0 | 50 |
|
138 |
+
| 3.0 | 50 |
|
139 |
+
| 4.0 | 50 |
|
140 |
+
| 5.0 | 50 |
|
141 |
+
| 6.0 | 50 |
|
142 |
+
| 7.0 | 50 |
|
143 |
+
|
144 |
+
### Training Hyperparameters
|
145 |
+
- batch_size: (512, 512)
|
146 |
+
- num_epochs: (20, 20)
|
147 |
+
- max_steps: -1
|
148 |
+
- sampling_strategy: oversampling
|
149 |
+
- num_iterations: 40
|
150 |
+
- body_learning_rate: (2e-05, 2e-05)
|
151 |
+
- head_learning_rate: 2e-05
|
152 |
+
- loss: CosineSimilarityLoss
|
153 |
+
- distance_metric: cosine_distance
|
154 |
+
- margin: 0.25
|
155 |
+
- end_to_end: False
|
156 |
+
- use_amp: False
|
157 |
+
- warmup_proportion: 0.1
|
158 |
+
- seed: 42
|
159 |
+
- eval_max_steps: -1
|
160 |
+
- load_best_model_at_end: False
|
161 |
+
|
162 |
+
### Training Results
|
163 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
164 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
165 |
+
| 0.0159 | 1 | 0.4035 | - |
|
166 |
+
| 0.7937 | 50 | 0.322 | - |
|
167 |
+
| 1.5873 | 100 | 0.125 | - |
|
168 |
+
| 2.3810 | 150 | 0.0315 | - |
|
169 |
+
| 3.1746 | 200 | 0.0111 | - |
|
170 |
+
| 3.9683 | 250 | 0.0005 | - |
|
171 |
+
| 4.7619 | 300 | 0.0002 | - |
|
172 |
+
| 5.5556 | 350 | 0.0001 | - |
|
173 |
+
| 6.3492 | 400 | 0.0001 | - |
|
174 |
+
| 7.1429 | 450 | 0.0001 | - |
|
175 |
+
| 7.9365 | 500 | 0.0001 | - |
|
176 |
+
| 8.7302 | 550 | 0.0001 | - |
|
177 |
+
| 9.5238 | 600 | 0.0001 | - |
|
178 |
+
| 10.3175 | 650 | 0.0001 | - |
|
179 |
+
| 11.1111 | 700 | 0.0 | - |
|
180 |
+
| 11.9048 | 750 | 0.0001 | - |
|
181 |
+
| 12.6984 | 800 | 0.0 | - |
|
182 |
+
| 13.4921 | 850 | 0.0 | - |
|
183 |
+
| 14.2857 | 900 | 0.0 | - |
|
184 |
+
| 15.0794 | 950 | 0.0 | - |
|
185 |
+
| 15.8730 | 1000 | 0.0 | - |
|
186 |
+
| 16.6667 | 1050 | 0.0 | - |
|
187 |
+
| 17.4603 | 1100 | 0.0 | - |
|
188 |
+
| 18.2540 | 1150 | 0.0001 | - |
|
189 |
+
| 19.0476 | 1200 | 0.0 | - |
|
190 |
+
| 19.8413 | 1250 | 0.0 | - |
|
191 |
+
|
192 |
+
### Framework Versions
|
193 |
+
- Python: 3.10.12
|
194 |
+
- SetFit: 1.1.0.dev0
|
195 |
+
- Sentence Transformers: 3.1.1
|
196 |
+
- Transformers: 4.46.1
|
197 |
+
- PyTorch: 2.4.0+cu121
|
198 |
+
- Datasets: 2.20.0
|
199 |
+
- Tokenizers: 0.20.0
|
200 |
+
|
201 |
+
## Citation
|
202 |
+
|
203 |
+
### BibTeX
|
204 |
+
```bibtex
|
205 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
206 |
+
doi = {10.48550/ARXIV.2209.11055},
|
207 |
+
url = {https://arxiv.org/abs/2209.11055},
|
208 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
209 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
210 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
211 |
+
publisher = {arXiv},
|
212 |
+
year = {2022},
|
213 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
214 |
+
}
|
215 |
+
```
|
216 |
+
|
217 |
+
<!--
|
218 |
+
## Glossary
|
219 |
+
|
220 |
+
*Clearly define terms in order to be accessible across audiences.*
|
221 |
+
-->
|
222 |
+
|
223 |
+
<!--
|
224 |
+
## Model Card Authors
|
225 |
+
|
226 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
227 |
+
-->
|
228 |
+
|
229 |
+
<!--
|
230 |
+
## Model Card Contact
|
231 |
+
|
232 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
233 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_fd",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cc4b21b892776dce86fa848526231571406de11e5e558ea851751b436c2954d
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b04e4149ccfa4fa1079b3cf4b8bb99a520bdbbb3916e55bc178d7b31f42b5b3
|
3 |
+
size 50087
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|