mini1013 commited on
Commit
5aef5cb
·
verified ·
1 Parent(s): 0e19012

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 1883 시럽 1000ml 바닐라 3병 Vanilla 바닐라 달콤한푸린
14
+ - text: 모닌 바닐라 시럽 1000ml MONIN 홈카페 커피시럽 로스티드 헤이즐넛 700ml 아르타
15
+ - text: 리고 초코 시럽 585g 2개세트 (주)비앤씨인터내셔널
16
+ - text: 옳곡 국내산 피넛버터 땅콩잼 무첨가 땅콩버터 200g 크런치 스무스 03.스무스+크런치 조은스토어2
17
+ - text: 페레로 누텔라 헤이즐넛 코코아 스프레드 370g 5개 누텔라 헤이즐넛 코코아 스프레드 370g 5개 홈마트
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.6548139319295457
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 8 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 6.0 | <ul><li>'아이언맥스 프로틴 쨈 스프레드 초코 아몬드 250g 2팩 IronMaxx 블레스윤'</li><li>'페레로 누텔라 헤이즐넛 코코아 스프레드 370g 3개 누텔라 헤이즐넛 코코아 스프레드 370g 3개 홈마트'</li><li>'누텔라 헤이즐넛 코코아 스프레드 370g x 2개 [라면] 봉지라면_오뚜기 짜슐랭 145g 20개 옐로우로켓'</li></ul> |
66
+ | 1.0 | <ul><li>'[가당딸기] 국산 냉동 가당딸기 2kg 아이스베리 (6개/박스) 주식회사 커피바바'</li><li>'복음자리 진심의 딸기 1kg 딸기청 🍓진심의 딸기 1kg 5개🍓 담다'</li><li>'초록원 과일잼 1kg x 2개 딸기잼 1021653 딸기잼1kg 블루베리잼1kg_파인애플망고잼1kg 앤디월드'</li></ul> |
67
+ | 5.0 | <ul><li>'Torani 무설탕 소스, 다크 초콜릿, 1.9L(64온스) 화이트 초콜릿_64 Fl Oz (Pack of 1) 저무리5'</li><li>'모카믹스 다크소스 초콜렛 2kg 1박스 6개 초코소스 엠씨컴퍼니 (주)'</li><li>'매일유업 테너소스 초콜렛 1.35kg 1병 카라멜 1.35kg 티피컨테이너'</li></ul> |
68
+ | 4.0 | <ul><li>'오뚜기 맛있는 사과쨈 300G 홈카페 식재료 토스트 브런치 캠핑 아이들 간식 봄날스토어'</li><li>'오뚜기 Light sugar 사과쨈 290g 4개 007스테이지스'</li><li>'[달콤한 맛있는] 밀크스프레드 얼그레이 235g [블루베리 딸기 사과 포도 버터맛] 레인보우'</li></ul> |
69
+ | 0.0 | <ul><li>'포모나 얼그레이 하이볼 시럽 밀크티 홍차 1000ml 06-포모나 카라멜 시럽 주식회사 커피창고'</li><li>'프프프베이커리 빵에 발라먹는 버터스프레드 얼그레이 맛 【1개】 허니 데칼컴퍼니(Decal Company)'</li><li>'매일 테너베이스 청포도 에이드 스무디 농축액 1.2kg 1022147 오렌지 1.2kg 가이던스'</li></ul> |
70
+ | 3.0 | <ul><li>'LB 메이플시럽189ml(병) (N2) 주식회사 에스에스지닷컴'</li><li>'마누카 헬스 Manuka health 마누카 허니 MGO 250+ 시럽 100ml K&G GmbH'</li><li>'시럽 초콜렛 네이처 컨트리 라몬제이'</li></ul> |
71
+ | 7.0 | <ul><li>'커피시럽 카페시럽 1.5L x2병 대상 롯데 파우더 커피 대상 로즈버드 그린티 파우더 500g 가루녹차 하늘담아'</li><li>'토라니 카라멜 미니 토핑용소스 468g / 카라멜마끼야또 카라멜라떼 (주)오케이푸드'</li><li>'1883 헤이즐넛시럽 1883 라임 시럽 1000ml 엔에프 컴퍼니'</li></ul> |
72
+ | 2.0 | <ul><li>'[신세계 가공](신세계본점)리고땅콩버터크리미 462g 주식회사 에스에스지닷컴'</li><li>'스키피 땅콩버터1.36kg 스키피 크리미 땅콩버터 2.27kg 두두유통'</li><li>'피비핏 버터 오리지널 파우더 피넛 프리 프로틴 글루텐 850g 에코프리'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Metric |
78
+ |:--------|:-------|
79
+ | **all** | 0.6548 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fd16")
98
+ # Run inference
99
+ preds = model("리고 초코 시럽 585g 2개세트 (주)비앤씨인터내셔널")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:--------|:----|
131
+ | Word count | 4 | 10.8025 | 29 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:------|:----------------------|
135
+ | 0.0 | 50 |
136
+ | 1.0 | 50 |
137
+ | 2.0 | 50 |
138
+ | 3.0 | 50 |
139
+ | 4.0 | 50 |
140
+ | 5.0 | 50 |
141
+ | 6.0 | 50 |
142
+ | 7.0 | 50 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (512, 512)
146
+ - num_epochs: (20, 20)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - num_iterations: 40
150
+ - body_learning_rate: (2e-05, 2e-05)
151
+ - head_learning_rate: 2e-05
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - seed: 42
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: False
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:-------:|:----:|:-------------:|:---------------:|
165
+ | 0.0159 | 1 | 0.4035 | - |
166
+ | 0.7937 | 50 | 0.322 | - |
167
+ | 1.5873 | 100 | 0.125 | - |
168
+ | 2.3810 | 150 | 0.0315 | - |
169
+ | 3.1746 | 200 | 0.0111 | - |
170
+ | 3.9683 | 250 | 0.0005 | - |
171
+ | 4.7619 | 300 | 0.0002 | - |
172
+ | 5.5556 | 350 | 0.0001 | - |
173
+ | 6.3492 | 400 | 0.0001 | - |
174
+ | 7.1429 | 450 | 0.0001 | - |
175
+ | 7.9365 | 500 | 0.0001 | - |
176
+ | 8.7302 | 550 | 0.0001 | - |
177
+ | 9.5238 | 600 | 0.0001 | - |
178
+ | 10.3175 | 650 | 0.0001 | - |
179
+ | 11.1111 | 700 | 0.0 | - |
180
+ | 11.9048 | 750 | 0.0001 | - |
181
+ | 12.6984 | 800 | 0.0 | - |
182
+ | 13.4921 | 850 | 0.0 | - |
183
+ | 14.2857 | 900 | 0.0 | - |
184
+ | 15.0794 | 950 | 0.0 | - |
185
+ | 15.8730 | 1000 | 0.0 | - |
186
+ | 16.6667 | 1050 | 0.0 | - |
187
+ | 17.4603 | 1100 | 0.0 | - |
188
+ | 18.2540 | 1150 | 0.0001 | - |
189
+ | 19.0476 | 1200 | 0.0 | - |
190
+ | 19.8413 | 1250 | 0.0 | - |
191
+
192
+ ### Framework Versions
193
+ - Python: 3.10.12
194
+ - SetFit: 1.1.0.dev0
195
+ - Sentence Transformers: 3.1.1
196
+ - Transformers: 4.46.1
197
+ - PyTorch: 2.4.0+cu121
198
+ - Datasets: 2.20.0
199
+ - Tokenizers: 0.20.0
200
+
201
+ ## Citation
202
+
203
+ ### BibTeX
204
+ ```bibtex
205
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
206
+ doi = {10.48550/ARXIV.2209.11055},
207
+ url = {https://arxiv.org/abs/2209.11055},
208
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
209
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
210
+ title = {Efficient Few-Shot Learning Without Prompts},
211
+ publisher = {arXiv},
212
+ year = {2022},
213
+ copyright = {Creative Commons Attribution 4.0 International}
214
+ }
215
+ ```
216
+
217
+ <!--
218
+ ## Glossary
219
+
220
+ *Clearly define terms in order to be accessible across audiences.*
221
+ -->
222
+
223
+ <!--
224
+ ## Model Card Authors
225
+
226
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
227
+ -->
228
+
229
+ <!--
230
+ ## Model Card Contact
231
+
232
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
233
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fd",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cc4b21b892776dce86fa848526231571406de11e5e558ea851751b436c2954d
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b04e4149ccfa4fa1079b3cf4b8bb99a520bdbbb3916e55bc178d7b31f42b5b3
3
+ size 50087
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff