--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 1883 시럽 1000ml 바닐라 3병 Vanilla 바닐라 달콤한푸린 - text: 모닌 바닐라 시럽 1000ml MONIN 홈카페 커피시럽 로스티드 헤이즐넛 700ml 아르타 - text: 리고 초코 시럽 585g 2개세트 (주)비앤씨인터내셔널 - text: 옳곡 국내산 피넛버터 땅콩잼 무첨가 땅콩버터 200g 크런치 스무스 03.스무스+크런치 조은스토어2 - text: 페레로 누텔라 헤이즐넛 코코아 스프레드 370g 5개 누텔라 헤이즐넛 코코아 스프레드 370g 5개 홈마트 inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.6548139319295457 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 8 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | | | 1.0 | | | 5.0 | | | 4.0 | | | 0.0 | | | 3.0 | | | 7.0 | | | 2.0 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.6548 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_fd16") # Run inference preds = model("리고 초코 시럽 585g 2개세트 (주)비앤씨인터내셔널") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 10.8025 | 29 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0159 | 1 | 0.4035 | - | | 0.7937 | 50 | 0.322 | - | | 1.5873 | 100 | 0.125 | - | | 2.3810 | 150 | 0.0315 | - | | 3.1746 | 200 | 0.0111 | - | | 3.9683 | 250 | 0.0005 | - | | 4.7619 | 300 | 0.0002 | - | | 5.5556 | 350 | 0.0001 | - | | 6.3492 | 400 | 0.0001 | - | | 7.1429 | 450 | 0.0001 | - | | 7.9365 | 500 | 0.0001 | - | | 8.7302 | 550 | 0.0001 | - | | 9.5238 | 600 | 0.0001 | - | | 10.3175 | 650 | 0.0001 | - | | 11.1111 | 700 | 0.0 | - | | 11.9048 | 750 | 0.0001 | - | | 12.6984 | 800 | 0.0 | - | | 13.4921 | 850 | 0.0 | - | | 14.2857 | 900 | 0.0 | - | | 15.0794 | 950 | 0.0 | - | | 15.8730 | 1000 | 0.0 | - | | 16.6667 | 1050 | 0.0 | - | | 17.4603 | 1100 | 0.0 | - | | 18.2540 | 1150 | 0.0001 | - | | 19.0476 | 1200 | 0.0 | - | | 19.8413 | 1250 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```