File size: 8,049 Bytes
9d12644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 셰프마스터 쉐프마스터 식용색소 2.3oz 온스 베이킹 슬라임 마카롱색소 퍼플 2.3oz 위베이크
- text: 행복한 쌀잉어빵 반죽 5kg 팥앙금 3kg 행복유통
- text: 셰프마스터 쉐프마스터 식용색소 0.7oz 리쿠아젤 마카롱색소 반액상타입 아보카도 위베이크
- text: 쫄깃한호떡가루 2.5kg 업소용 씨앗호떡 찹쌀반죽 밀가루 파우더  번개호랑이
- text: 퀄리티 스프링클 크리스마스 이브 63g 케이크 원형 쿠키 데코 6.발렌타인 넌패럴 스프링클(NEW) 위베이크
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.8174651303820497
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                         |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.0   | <ul><li>'찹쌀호떡믹스 400g 5개  오브젝티브'</li><li>'신진 찹쌀호떡가루 2.5Kg 호떡믹스  퍼스트'</li><li>'찹쌀호떡믹스 400g 10개 묶음배송가능 옵션9.\xa0오븐용깨찰빵믹스 500g EY 인터내셔널'</li></ul>                    |
| 0.0   | <ul><li>'브레드가든 바닐라에센스 59ml  주식회사 몬즈컴퍼니'</li><li>'선인 냉동레몬제스트 500g 레몬껍질 선인 냉동레몬제스트 500g 레몬껍질 아이은하'</li><li>'샤프 인스턴트 이스트 골드 500g 샤프 이스트 골드 500g 주식회사 맘쿠킹'</li></ul> |
| 2.0   | <ul><li>'곰표 와플믹스 1kg x 4팩  코스트코나'</li><li>'동원비셰프 스위트사워믹스1kg  엠디에스마케팅 주식회사'</li><li>'CJ 백설 붕어빵믹스 10kg [맛있는] [좋아하는]간편  로이스'</li></ul>                              |
| 1.0   | <ul><li>'오뚜기 베이킹소다 400g  지윤 주식회사'</li><li>'밥스레드밀 파우더 397g 베이킹  글로벌피스'</li><li>'Anthony s 유기농 요리 등급 코코아 파우더 1 lb  프로마스터'</li></ul>                                |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.8175 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd17")
# Run inference
preds = model("행복한 쌀잉어빵 반죽 5kg 팥앙금 3kg 행복유통")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.2    | 22  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0312  | 1    | 0.4064        | -               |
| 1.5625  | 50   | 0.1639        | -               |
| 3.125   | 100  | 0.003         | -               |
| 4.6875  | 150  | 0.0003        | -               |
| 6.25    | 200  | 0.0001        | -               |
| 7.8125  | 250  | 0.0001        | -               |
| 9.375   | 300  | 0.0001        | -               |
| 10.9375 | 350  | 0.0           | -               |
| 12.5    | 400  | 0.0           | -               |
| 14.0625 | 450  | 0.0           | -               |
| 15.625  | 500  | 0.0           | -               |
| 17.1875 | 550  | 0.0           | -               |
| 18.75   | 600  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->