File size: 8,049 Bytes
9d12644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 셰프마스터 쉐프마스터 식용색소 2.3oz 온스 베이킹 슬라임 마카롱색소 퍼플 2.3oz 위베이크
- text: 행복한 쌀잉어빵 반죽 5kg 팥앙금 3kg 행복유통
- text: 셰프마스터 쉐프마스터 식용색소 0.7oz 리쿠아젤 마카롱색소 반액상타입 아보카도 위베이크
- text: 쫄깃한호떡가루 2.5kg 업소용 씨앗호떡 찹쌀반죽 밀가루 파우더 번개호랑이
- text: 퀄리티 스프링클 크리스마스 이브 63g 케이크 원형 쿠키 데코 6.발렌타인 넌패럴 스프링클(NEW) 위베이크
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8174651303820497
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.0 | <ul><li>'찹쌀호떡믹스 400g 5개 오브젝티브'</li><li>'신진 찹쌀호떡가루 2.5Kg 호떡믹스 퍼스트'</li><li>'찹쌀호떡믹스 400g 10개 묶음배송가능 옵션9.\xa0오븐용깨찰빵믹스 500g EY 인터내셔널'</li></ul> |
| 0.0 | <ul><li>'브레드가든 바닐라에센스 59ml 주식회사 몬즈컴퍼니'</li><li>'선인 냉동레몬제스트 500g 레몬껍질 선인 냉동레몬제스트 500g 레몬껍질 아이은하'</li><li>'샤프 인스턴트 이스트 골드 500g 샤프 이스트 골드 500g 주식회사 맘쿠킹'</li></ul> |
| 2.0 | <ul><li>'곰표 와플믹스 1kg x 4팩 코스트코나'</li><li>'동원비셰프 스위트사워믹스1kg 엠디에스마케팅 주식회사'</li><li>'CJ 백설 붕어빵믹스 10kg [맛있는] [좋아하는]간편 로이스'</li></ul> |
| 1.0 | <ul><li>'오뚜기 베이킹소다 400g 지윤 주식회사'</li><li>'밥스레드밀 파우더 397g 베이킹 글로벌피스'</li><li>'Anthony s 유기농 요리 등급 코코아 파우더 1 lb 프로마스터'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.8175 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd17")
# Run inference
preds = model("행복한 쌀잉어빵 반죽 5kg 팥앙금 3kg 행복유통")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.2 | 22 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0312 | 1 | 0.4064 | - |
| 1.5625 | 50 | 0.1639 | - |
| 3.125 | 100 | 0.003 | - |
| 4.6875 | 150 | 0.0003 | - |
| 6.25 | 200 | 0.0001 | - |
| 7.8125 | 250 | 0.0001 | - |
| 9.375 | 300 | 0.0001 | - |
| 10.9375 | 350 | 0.0 | - |
| 12.5 | 400 | 0.0 | - |
| 14.0625 | 450 | 0.0 | - |
| 15.625 | 500 | 0.0 | - |
| 17.1875 | 550 | 0.0 | - |
| 18.75 | 600 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |