Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +252 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 동성 순후추 1KG 주식회사 청춘에프앤비
|
14 |
+
- text: 오뚜기 2배사과식초 1.8L (주) 식자재민족
|
15 |
+
- text: 무화당 알룰로스 분말 250g (주)닥터다이어리
|
16 |
+
- text: 마이노멀 알룰로스 485g 메인루트
|
17 |
+
- text: 오뚜기 순후추 캔 100g 주식회사 두위드(Do With)
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: metric
|
31 |
+
value: 0.9504337050805453
|
32 |
+
name: Metric
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 12 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 10.0 | <ul><li>'설탕대신 스테비아 1.2kg 주식회사 더 골든트리'</li><li>'자연지애 에리스리톨 1:1 눈꽃 스테비아 1kg 설탕대체 당뇨설탕 당류 제로 2. 1kg x 2개 주식회사 닥터스랩'</li><li>'바이오믹스 설탕대신 자일리톨 180g 주식회사 와식자재마트(민락지점)'</li></ul> |
|
66 |
+
| 8.0 | <ul><li>'커클랜드 발사믹 식초 1L 코스트코 ▶▶▶전국 초완벽 뽁뽁이 택배◀◀◀ 브라이튼'</li><li>'롯데 미림 18L 말통 (맛술, 요리용 요리주) 와사비푸드'</li><li>'롯데 미림 1.8L 맛술 요리용 요리주 1개 블레스(Bless)'</li></ul> |
|
67 |
+
| 5.0 | <ul><li>'정경아 생강 조청 550g 무설탕 생강청 차 즙 엿 속쓰림 수제조청 엿기름 쌀조청 답례품 2. 스틱형 생강조청 33개 (1만원 할인) 정드림'</li><li>'CJ 백설 요리당 2.45kg 조림 무침 구이 에스비푸드시스템'</li><li>'오뚜기 옛날 물엿 5kg 솔브이트코리아'</li></ul> |
|
68 |
+
| 0.0 | <ul><li>'태산식품 일회용 맛미 겨자소스 3g 200개 미니간장200개입 다온'</li><li>'오뚜기 오쉐프 연겨자 480g 튜브 주식회사 두위드(Do With)'</li><li>'오뚜기 오쉐프 연겨자 480g 주식회사 데일즈'</li></ul> |
|
69 |
+
| 6.0 | <ul><li>'[DA85]큐원 하얀설탕(실온 3Kg) 기화유통'</li><li>'CJ제일제당 백설 브라운 자일로스설탕 5kg 오늘의 컨셉'</li><li>'CJ 백설 하얀설탕 1kg 매실 대용량 청 제빵용 에스비푸드시스템'</li></ul> |
|
70 |
+
| 11.0 | <ul><li>'흑후추가루(서원 200g)/강황가루/후추1kg/가루쌀빵/햇고추가루/후추그라인더/후추가루1KG/tnsgncn/todnrkfn (주)큐원상사'</li><li>'오뚜기 직접갈아먹는 통후추(리필용) 소스 조미료 고기 삼겹살 목살 통후추 스테이크 35G 1세트 청주그릇주방설비'</li><li>'청정원 향신료 잡내제거 천연 순후추 100g 육류요리 생선요리 알싸한풍미 지니마켓'</li></ul> |
|
71 |
+
| 2.0 | <ul><li>'경상북도 영양 명가 고추가루 매운맛 1kg (2023년산) -인증 시안무역'</li><li>'델라미코 크러쉬드 레드페퍼 크러쉬드 레드페퍼 370g 두두유통'</li><li>'청정식품 23년 국산 고운 햇 고춧가루 1kg CJA001-99_(청양)고운 고추가루 1kg 유한킴벌리 에스와이'</li></ul> |
|
72 |
+
| 9.0 | <ul><li>'한라식품 프리미엄참치액500ml 11203420 프리미엄참치액 세론세론'</li><li>'CJ제일제당 백설 참치액 진 더 풍부한 맛 900g 둘레푸드'</li><li>'티파로스 피쉬소스 700ml (태국 멸치액젓 남쁠라 느억맘소스) 팝스이엔티'</li></ul> |
|
73 |
+
| 1.0 | <ul><li>'움트리 705 고추냉이 700g 청비 알맹이 생고추냉이 700g 주식회사 팜'</li><li>'청비 생고추냉이 700g 생와사비 와사비 청비 뿌리갈은 생고추냉이 700g 주식회사 팜'</li><li>'삼광999 생와사비 750g 제루통상'</li></ul> |
|
74 |
+
| 4.0 | <ul><li>'[나가타니엔] 오토나노 후리카케 미니 2종 컬리'</li><li>'일본 후리카케 밥 주먹밥 혼가쓰오 나가타니엔 일본 오차즈케가루 매크로온'</li><li>'마루미야 노리타마 후리카케 28g 오차즈케 1초재팬'</li></ul> |
|
75 |
+
| 3.0 | <ul><li>'코스트코 맥코믹 몬트리얼 스테이크 시즈닝 822g 1개 주식회사베이비또'</li><li>'샘표 연두 요리에센스 순 860ml 달달구리'</li><li>'해통령 육수한알 진한맛 25입 100g 트레이더스 스마일유통'</li></ul> |
|
76 |
+
| 7.0 | <ul><li>'CJ제일제당 백설 허브맛 솔트 매콤한맛 50g 허브솔트매콤한맛 화진유통'</li><li>'백설 허브맛솔트시즈닝 매콤한맛 50g 주식회사 팩앤폴스'</li><li>'[백설]오천년의 신비 명품 천일염 (가는 입자) 250g (영등포점) 주식회사 에스에스지닷컴'</li></ul> |
|
77 |
+
|
78 |
+
## Evaluation
|
79 |
+
|
80 |
+
### Metrics
|
81 |
+
| Label | Metric |
|
82 |
+
|:--------|:-------|
|
83 |
+
| **all** | 0.9504 |
|
84 |
+
|
85 |
+
## Uses
|
86 |
+
|
87 |
+
### Direct Use for Inference
|
88 |
+
|
89 |
+
First install the SetFit library:
|
90 |
+
|
91 |
+
```bash
|
92 |
+
pip install setfit
|
93 |
+
```
|
94 |
+
|
95 |
+
Then you can load this model and run inference.
|
96 |
+
|
97 |
+
```python
|
98 |
+
from setfit import SetFitModel
|
99 |
+
|
100 |
+
# Download from the 🤗 Hub
|
101 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_fd18")
|
102 |
+
# Run inference
|
103 |
+
preds = model("마이노멀 알룰로스 485g 메인루트")
|
104 |
+
```
|
105 |
+
|
106 |
+
<!--
|
107 |
+
### Downstream Use
|
108 |
+
|
109 |
+
*List how someone could finetune this model on their own dataset.*
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
### Out-of-Scope Use
|
114 |
+
|
115 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
116 |
+
-->
|
117 |
+
|
118 |
+
<!--
|
119 |
+
## Bias, Risks and Limitations
|
120 |
+
|
121 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
122 |
+
-->
|
123 |
+
|
124 |
+
<!--
|
125 |
+
### Recommendations
|
126 |
+
|
127 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
128 |
+
-->
|
129 |
+
|
130 |
+
## Training Details
|
131 |
+
|
132 |
+
### Training Set Metrics
|
133 |
+
| Training set | Min | Median | Max |
|
134 |
+
|:-------------|:----|:-------|:----|
|
135 |
+
| Word count | 3 | 9.1646 | 29 |
|
136 |
+
|
137 |
+
| Label | Training Sample Count |
|
138 |
+
|:------|:----------------------|
|
139 |
+
| 0.0 | 50 |
|
140 |
+
| 1.0 | 50 |
|
141 |
+
| 2.0 | 50 |
|
142 |
+
| 3.0 | 50 |
|
143 |
+
| 4.0 | 21 |
|
144 |
+
| 5.0 | 50 |
|
145 |
+
| 6.0 | 50 |
|
146 |
+
| 7.0 | 50 |
|
147 |
+
| 8.0 | 50 |
|
148 |
+
| 9.0 | 50 |
|
149 |
+
| 10.0 | 50 |
|
150 |
+
| 11.0 | 50 |
|
151 |
+
|
152 |
+
### Training Hyperparameters
|
153 |
+
- batch_size: (512, 512)
|
154 |
+
- num_epochs: (20, 20)
|
155 |
+
- max_steps: -1
|
156 |
+
- sampling_strategy: oversampling
|
157 |
+
- num_iterations: 40
|
158 |
+
- body_learning_rate: (2e-05, 2e-05)
|
159 |
+
- head_learning_rate: 2e-05
|
160 |
+
- loss: CosineSimilarityLoss
|
161 |
+
- distance_metric: cosine_distance
|
162 |
+
- margin: 0.25
|
163 |
+
- end_to_end: False
|
164 |
+
- use_amp: False
|
165 |
+
- warmup_proportion: 0.1
|
166 |
+
- seed: 42
|
167 |
+
- eval_max_steps: -1
|
168 |
+
- load_best_model_at_end: False
|
169 |
+
|
170 |
+
### Training Results
|
171 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
172 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
173 |
+
| 0.0111 | 1 | 0.4135 | - |
|
174 |
+
| 0.5556 | 50 | 0.3821 | - |
|
175 |
+
| 1.1111 | 100 | 0.0967 | - |
|
176 |
+
| 1.6667 | 150 | 0.0493 | - |
|
177 |
+
| 2.2222 | 200 | 0.0399 | - |
|
178 |
+
| 2.7778 | 250 | 0.0149 | - |
|
179 |
+
| 3.3333 | 300 | 0.0107 | - |
|
180 |
+
| 3.8889 | 350 | 0.01 | - |
|
181 |
+
| 4.4444 | 400 | 0.0116 | - |
|
182 |
+
| 5.0 | 450 | 0.0078 | - |
|
183 |
+
| 5.5556 | 500 | 0.0001 | - |
|
184 |
+
| 6.1111 | 550 | 0.0001 | - |
|
185 |
+
| 6.6667 | 600 | 0.0001 | - |
|
186 |
+
| 7.2222 | 650 | 0.0001 | - |
|
187 |
+
| 7.7778 | 700 | 0.0001 | - |
|
188 |
+
| 8.3333 | 750 | 0.0001 | - |
|
189 |
+
| 8.8889 | 800 | 0.0001 | - |
|
190 |
+
| 9.4444 | 850 | 0.0001 | - |
|
191 |
+
| 10.0 | 900 | 0.0001 | - |
|
192 |
+
| 10.5556 | 950 | 0.0 | - |
|
193 |
+
| 11.1111 | 1000 | 0.0 | - |
|
194 |
+
| 11.6667 | 1050 | 0.0 | - |
|
195 |
+
| 12.2222 | 1100 | 0.0 | - |
|
196 |
+
| 12.7778 | 1150 | 0.0 | - |
|
197 |
+
| 13.3333 | 1200 | 0.0 | - |
|
198 |
+
| 13.8889 | 1250 | 0.0 | - |
|
199 |
+
| 14.4444 | 1300 | 0.0 | - |
|
200 |
+
| 15.0 | 1350 | 0.0 | - |
|
201 |
+
| 15.5556 | 1400 | 0.0 | - |
|
202 |
+
| 16.1111 | 1450 | 0.0 | - |
|
203 |
+
| 16.6667 | 1500 | 0.0 | - |
|
204 |
+
| 17.2222 | 1550 | 0.0 | - |
|
205 |
+
| 17.7778 | 1600 | 0.0 | - |
|
206 |
+
| 18.3333 | 1650 | 0.0 | - |
|
207 |
+
| 18.8889 | 1700 | 0.0 | - |
|
208 |
+
| 19.4444 | 1750 | 0.0 | - |
|
209 |
+
| 20.0 | 1800 | 0.0 | - |
|
210 |
+
|
211 |
+
### Framework Versions
|
212 |
+
- Python: 3.10.12
|
213 |
+
- SetFit: 1.1.0.dev0
|
214 |
+
- Sentence Transformers: 3.1.1
|
215 |
+
- Transformers: 4.46.1
|
216 |
+
- PyTorch: 2.4.0+cu121
|
217 |
+
- Datasets: 2.20.0
|
218 |
+
- Tokenizers: 0.20.0
|
219 |
+
|
220 |
+
## Citation
|
221 |
+
|
222 |
+
### BibTeX
|
223 |
+
```bibtex
|
224 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
225 |
+
doi = {10.48550/ARXIV.2209.11055},
|
226 |
+
url = {https://arxiv.org/abs/2209.11055},
|
227 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
228 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
229 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
230 |
+
publisher = {arXiv},
|
231 |
+
year = {2022},
|
232 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
233 |
+
}
|
234 |
+
```
|
235 |
+
|
236 |
+
<!--
|
237 |
+
## Glossary
|
238 |
+
|
239 |
+
*Clearly define terms in order to be accessible across audiences.*
|
240 |
+
-->
|
241 |
+
|
242 |
+
<!--
|
243 |
+
## Model Card Authors
|
244 |
+
|
245 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
246 |
+
-->
|
247 |
+
|
248 |
+
<!--
|
249 |
+
## Model Card Contact
|
250 |
+
|
251 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
252 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_fd",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:904f39480368207f44381eb6424fc030fb3f5e8602754df076136e8258c0ff2a
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac426eb011054f3b90dbedf6b2f9ce10fdaf712a20b2fe56ae0f7c8114e3f904
|
3 |
+
size 74727
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|