mini1013 commited on
Commit
ad1cf8f
·
verified ·
1 Parent(s): 86c8be4

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 동성 순후추 1KG 주식회사 청춘에프앤비
14
+ - text: 오뚜기 2배사과식초 1.8L (주) 식자재민족
15
+ - text: 무화당 알룰로스 분말 250g (주)닥터다이어리
16
+ - text: 마이노멀 알룰로스 485g 메인루트
17
+ - text: 오뚜기 순후추 캔 100g 주식회사 두위드(Do With)
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9504337050805453
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 12 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 10.0 | <ul><li>'설탕대신 스테비아 1.2kg 주식회사 더 골든트리'</li><li>'자연지애 에리스리톨 1:1 눈꽃 스테비아 1kg 설탕대체 당뇨설탕 당류 제로 2. 1kg x 2개 주식회사 닥터스랩'</li><li>'바이오믹스 설탕대신 자일리톨 180g 주식회사 와식자재마트(민락지점)'</li></ul> |
66
+ | 8.0 | <ul><li>'커클랜드 발사믹 식초 1L 코스트코 ▶▶▶전국 초완벽 뽁뽁이 택배◀◀◀ 브라이튼'</li><li>'롯데 미림 18L 말통 (맛술, 요리용 요리주) 와사비푸드'</li><li>'롯데 미림 1.8L 맛술 요리용 요리주 1개 블레스(Bless)'</li></ul> |
67
+ | 5.0 | <ul><li>'정경아 생강 조청 550g 무설탕 생강청 차 즙 엿 속쓰림 수제조청 엿기름 쌀조청 답례품 2. 스틱형 생강조청 33개 (1만원 할인) 정드림'</li><li>'CJ 백설 요리당 2.45kg 조림 무침 구이 에스비푸드시스템'</li><li>'오뚜기 옛날 물엿 5kg 솔브이트코리아'</li></ul> |
68
+ | 0.0 | <ul><li>'태산식품 일회용 맛미 겨자소스 3g 200개 미니간장200개입 다온'</li><li>'오뚜기 오쉐프 연겨자 480g 튜브 주식회사 두위드(Do With)'</li><li>'오뚜기 오쉐프 연겨자 480g 주식회사 데일즈'</li></ul> |
69
+ | 6.0 | <ul><li>'[DA85]큐원 하얀설탕(실온 3Kg) 기화유통'</li><li>'CJ제일제당 백설 브라운 자일로스설탕 5kg 오늘의 컨셉'</li><li>'CJ 백설 하얀설탕 1kg 매실 대용량 청 제빵용 에스비푸드시스템'</li></ul> |
70
+ | 11.0 | <ul><li>'흑후추가루(서원 200g)/강황가루/후추1kg/가루쌀빵/햇고추가루/후추그라인더/후추가루1KG/tnsgncn/todnrkfn (주)큐원상사'</li><li>'오뚜기 직접갈아먹는 통후추(리필용) 소스 조미료 고기 삼겹살 목살 통후추 스테이크 35G 1세트 청주그릇주방설비'</li><li>'청정원 향신료 잡내제거 천연 순후추 100g 육류요리 생선요리 알싸한풍미 지니마켓'</li></ul> |
71
+ | 2.0 | <ul><li>'경상북도 영양 명가 고추가루 매운맛 1kg (2023년산) -인증 시안무역'</li><li>'델라미코 크러쉬드 레드페퍼 크러쉬드 레드페퍼 370g 두두유통'</li><li>'청정식품 23년 국산 고운 햇 고춧가루 1kg CJA001-99_(청양)고운 고추가루 1kg 유한킴벌리 에스와이'</li></ul> |
72
+ | 9.0 | <ul><li>'한라식품 프리미엄참치액500ml 11203420 프리미엄참치액 세론세론'</li><li>'CJ제일제당 백설 참치액 진 더 풍부한 맛 900g 둘레푸드'</li><li>'티파로스 피쉬소스 700ml (태국 멸치액젓 남쁠라 느억맘소스) 팝스이엔티'</li></ul> |
73
+ | 1.0 | <ul><li>'움트리 705 고추냉이 700g 청비 알맹이 생고추냉이 700g 주식회사 팜'</li><li>'청비 생고추냉이 700g 생와사비 와사비 청비 뿌리갈은 생고추냉이 700g 주식회사 팜'</li><li>'삼광999 생와사비 750g 제루통상'</li></ul> |
74
+ | 4.0 | <ul><li>'[나가타니엔] 오토나노 후리카케 미니 2종 컬리'</li><li>'일본 후리카케 밥 주먹밥 혼가쓰오 나가타니엔 일본 오차즈케가루 매크로온'</li><li>'마루미야 노리타마 후리카케 28g 오차즈케 1초재팬'</li></ul> |
75
+ | 3.0 | <ul><li>'코스트코 맥코믹 몬트리얼 스테이크 시즈닝 822g 1개 주식회사베이비또'</li><li>'샘표 연두 요리에센스 순 860ml 달달구리'</li><li>'해통령 육수한알 진한맛 25입 100g 트레이더스 스마일유통'</li></ul> |
76
+ | 7.0 | <ul><li>'CJ제일제당 백설 허브맛 솔트 매콤한맛 50g 허브솔트매콤한맛 화진유통'</li><li>'백설 허브맛솔트시즈닝 매콤한맛 50g 주식회사 팩앤폴스'</li><li>'[백설]오천년의 신비 명품 천일염 (가는 입자) 250g (영등포점) 주식회사 에스에스지닷컴'</li></ul> |
77
+
78
+ ## Evaluation
79
+
80
+ ### Metrics
81
+ | Label | Metric |
82
+ |:--------|:-------|
83
+ | **all** | 0.9504 |
84
+
85
+ ## Uses
86
+
87
+ ### Direct Use for Inference
88
+
89
+ First install the SetFit library:
90
+
91
+ ```bash
92
+ pip install setfit
93
+ ```
94
+
95
+ Then you can load this model and run inference.
96
+
97
+ ```python
98
+ from setfit import SetFitModel
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fd18")
102
+ # Run inference
103
+ preds = model("마이노멀 알룰로스 485g 메인루트")
104
+ ```
105
+
106
+ <!--
107
+ ### Downstream Use
108
+
109
+ *List how someone could finetune this model on their own dataset.*
110
+ -->
111
+
112
+ <!--
113
+ ### Out-of-Scope Use
114
+
115
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
116
+ -->
117
+
118
+ <!--
119
+ ## Bias, Risks and Limitations
120
+
121
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
122
+ -->
123
+
124
+ <!--
125
+ ### Recommendations
126
+
127
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
128
+ -->
129
+
130
+ ## Training Details
131
+
132
+ ### Training Set Metrics
133
+ | Training set | Min | Median | Max |
134
+ |:-------------|:----|:-------|:----|
135
+ | Word count | 3 | 9.1646 | 29 |
136
+
137
+ | Label | Training Sample Count |
138
+ |:------|:----------------------|
139
+ | 0.0 | 50 |
140
+ | 1.0 | 50 |
141
+ | 2.0 | 50 |
142
+ | 3.0 | 50 |
143
+ | 4.0 | 21 |
144
+ | 5.0 | 50 |
145
+ | 6.0 | 50 |
146
+ | 7.0 | 50 |
147
+ | 8.0 | 50 |
148
+ | 9.0 | 50 |
149
+ | 10.0 | 50 |
150
+ | 11.0 | 50 |
151
+
152
+ ### Training Hyperparameters
153
+ - batch_size: (512, 512)
154
+ - num_epochs: (20, 20)
155
+ - max_steps: -1
156
+ - sampling_strategy: oversampling
157
+ - num_iterations: 40
158
+ - body_learning_rate: (2e-05, 2e-05)
159
+ - head_learning_rate: 2e-05
160
+ - loss: CosineSimilarityLoss
161
+ - distance_metric: cosine_distance
162
+ - margin: 0.25
163
+ - end_to_end: False
164
+ - use_amp: False
165
+ - warmup_proportion: 0.1
166
+ - seed: 42
167
+ - eval_max_steps: -1
168
+ - load_best_model_at_end: False
169
+
170
+ ### Training Results
171
+ | Epoch | Step | Training Loss | Validation Loss |
172
+ |:-------:|:----:|:-------------:|:---------------:|
173
+ | 0.0111 | 1 | 0.4135 | - |
174
+ | 0.5556 | 50 | 0.3821 | - |
175
+ | 1.1111 | 100 | 0.0967 | - |
176
+ | 1.6667 | 150 | 0.0493 | - |
177
+ | 2.2222 | 200 | 0.0399 | - |
178
+ | 2.7778 | 250 | 0.0149 | - |
179
+ | 3.3333 | 300 | 0.0107 | - |
180
+ | 3.8889 | 350 | 0.01 | - |
181
+ | 4.4444 | 400 | 0.0116 | - |
182
+ | 5.0 | 450 | 0.0078 | - |
183
+ | 5.5556 | 500 | 0.0001 | - |
184
+ | 6.1111 | 550 | 0.0001 | - |
185
+ | 6.6667 | 600 | 0.0001 | - |
186
+ | 7.2222 | 650 | 0.0001 | - |
187
+ | 7.7778 | 700 | 0.0001 | - |
188
+ | 8.3333 | 750 | 0.0001 | - |
189
+ | 8.8889 | 800 | 0.0001 | - |
190
+ | 9.4444 | 850 | 0.0001 | - |
191
+ | 10.0 | 900 | 0.0001 | - |
192
+ | 10.5556 | 950 | 0.0 | - |
193
+ | 11.1111 | 1000 | 0.0 | - |
194
+ | 11.6667 | 1050 | 0.0 | - |
195
+ | 12.2222 | 1100 | 0.0 | - |
196
+ | 12.7778 | 1150 | 0.0 | - |
197
+ | 13.3333 | 1200 | 0.0 | - |
198
+ | 13.8889 | 1250 | 0.0 | - |
199
+ | 14.4444 | 1300 | 0.0 | - |
200
+ | 15.0 | 1350 | 0.0 | - |
201
+ | 15.5556 | 1400 | 0.0 | - |
202
+ | 16.1111 | 1450 | 0.0 | - |
203
+ | 16.6667 | 1500 | 0.0 | - |
204
+ | 17.2222 | 1550 | 0.0 | - |
205
+ | 17.7778 | 1600 | 0.0 | - |
206
+ | 18.3333 | 1650 | 0.0 | - |
207
+ | 18.8889 | 1700 | 0.0 | - |
208
+ | 19.4444 | 1750 | 0.0 | - |
209
+ | 20.0 | 1800 | 0.0 | - |
210
+
211
+ ### Framework Versions
212
+ - Python: 3.10.12
213
+ - SetFit: 1.1.0.dev0
214
+ - Sentence Transformers: 3.1.1
215
+ - Transformers: 4.46.1
216
+ - PyTorch: 2.4.0+cu121
217
+ - Datasets: 2.20.0
218
+ - Tokenizers: 0.20.0
219
+
220
+ ## Citation
221
+
222
+ ### BibTeX
223
+ ```bibtex
224
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
225
+ doi = {10.48550/ARXIV.2209.11055},
226
+ url = {https://arxiv.org/abs/2209.11055},
227
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
228
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
229
+ title = {Efficient Few-Shot Learning Without Prompts},
230
+ publisher = {arXiv},
231
+ year = {2022},
232
+ copyright = {Creative Commons Attribution 4.0 International}
233
+ }
234
+ ```
235
+
236
+ <!--
237
+ ## Glossary
238
+
239
+ *Clearly define terms in order to be accessible across audiences.*
240
+ -->
241
+
242
+ <!--
243
+ ## Model Card Authors
244
+
245
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
246
+ -->
247
+
248
+ <!--
249
+ ## Model Card Contact
250
+
251
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
252
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fd",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:904f39480368207f44381eb6424fc030fb3f5e8602754df076136e8258c0ff2a
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac426eb011054f3b90dbedf6b2f9ce10fdaf712a20b2fe56ae0f7c8114e3f904
3
+ size 74727
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff